Cylindrically confined assembly of diblock copolymer under oscillatory shear flow
Manipulating the self-assembly nanostructures with combined different control measures is emerging as a promising route for numerous applications to generate templates and scaffolds for nanostructured materials. Here, the two different control measures are a cylindrical confinement and an oscillat...
Збережено в:
Дата: | 2016 |
---|---|
Автори: | , , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
2016
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/156205 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Cylindrically confined assembly of diblock copolymer under oscillatory shear flow / Y.-Q. Guo, J.-X. Pan, J.-J. Zhang, M.-N. Sun, B.-F. Wang, H.-Sh. Wu // Condensed Matter Physics. — 2016. — Т. 19, № 3. — С. 33601: 1–12. — Бібліогр.: 73 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Manipulating the self-assembly nanostructures with combined different control measures is emerging as a
promising route for numerous applications to generate templates and scaffolds for nanostructured materials.
Here, the two different control measures are a cylindrical confinement and an oscillatory shear flow. We study
the phase behavior of diblock copolymer confined in nanopore under oscillatory shear by considering different
D/L₀ (D is the diameter of the cylindrical nanopore, L₀ is the domain spacing) and different shears via Cell
Dynamics Simulation. Under different D/L₀ , in the system occurs different morphology evolution and phase
transition with the changing of amplitude and frequency. Meanwhile, it forms a series of novel morphologies.
For each D/L₀ , we construct a phase diagram of different forms and analyze the reason why the phase transition occurs. We find that although the morphologies are different under different D/L₀ , the reason of the
phase transition with the changing of amplitude and frequency is roughly the same, all caused by the interplay
of the field effect and confinement effect. These results can guide an experimentalist to an easy method of
creating the ordered, defect-free nanostructured materials using a combination of the cylindrical confinement
and oscillatory shear flow. |
---|