Counting Majorana bound states using complex momenta

Recently, the connection between Majorana fermions bound to the defects in arbitrary dimensions, and complex momentum roots of the vanishing determinant of the corresponding bulk Bogoliubov–de Gennes (BdG) Hamiltonian, has been established (EPL, 2015, 110, 67005). Based on this understanding, a for...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автор: Mandal, I.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2016
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/156221
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Counting Majorana bound states using complex momenta / I. Mandal // Condensed Matter Physics. — 2016. — Т. 19, № 3. — С. 33703: 1–21. — Бібліогр.: 56 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Recently, the connection between Majorana fermions bound to the defects in arbitrary dimensions, and complex momentum roots of the vanishing determinant of the corresponding bulk Bogoliubov–de Gennes (BdG) Hamiltonian, has been established (EPL, 2015, 110, 67005). Based on this understanding, a formula has been proposed to count the number (n) of the zero energy Majorana bound states, which is related to the topological phase of the system. In this paper, we provide a proof of the counting formula and we apply this formula to a variety of 1d and 2d models belonging to the classes BDI, DIII and D. We show that we can successfully chart out the topological phase diagrams. Studying these examples also enables us to explicitly observe the correspondence between these complex momentum solutions in the Fourier space, and the localized Majorana fermion wavefunctions in the position space. Finally, we corroborate the fact that for systems with a chiral symmetry, these solutions are the so-called “exceptional points”, where two or more eigenvalues of the complexified Hamiltonian coalesce.