(G,ϕ) -crossed product on (G,ϕ)-quasiassociative algebras
The notions of (G,ϕ)-crossed product and quasicrossed system are introduced in the setting of (G,ϕ)-quasiassociative algebras, i.e., algebras endowed with a grading by a group G, satisfying a ``quasiassociative'' law. It is presented two equivalence relations, one for quasicrossed systems...
Збережено в:
Дата: | 2017 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2017
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/156243 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | (G,ϕ) -crossed product on (G,ϕ)-quasiassociative algebras / H.M. Mamede Albuquerque, M.E. Félix Barreiro, J.M. Sánchez Delgado // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 1. — С. 46-70. — Бібліогр.: 12 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | The notions of (G,ϕ)-crossed product and quasicrossed system are introduced in the setting of (G,ϕ)-quasiassociative algebras, i.e., algebras endowed with a grading by a group G, satisfying a ``quasiassociative'' law. It is presented two equivalence relations, one for quasicrossed systems and another for (G,ϕ)-crossed products. Also the notion of graded-bimodule in order to study simple (G,ϕ)-crossed products is studied. |
---|