(G,ϕ) -crossed product on (G,ϕ)-quasiassociative algebras

The notions of (G,ϕ)-crossed product and quasicrossed system are introduced in the setting of (G,ϕ)-quasiassociative algebras, i.e., algebras endowed with a grading by a group G, satisfying a ``quasiassociative'' law. It is presented two equivalence relations, one for quasicrossed systems...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Mamede Albuquerque, H.M., Félix Barreiro, M.E., Sánchez Delgado, J.M.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2017
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/156243
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:(G,ϕ) -crossed product on (G,ϕ)-quasiassociative algebras / H.M. Mamede Albuquerque, M.E. Félix Barreiro, J.M. Sánchez Delgado // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 1. — С. 46-70. — Бібліогр.: 12 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The notions of (G,ϕ)-crossed product and quasicrossed system are introduced in the setting of (G,ϕ)-quasiassociative algebras, i.e., algebras endowed with a grading by a group G, satisfying a ``quasiassociative'' law. It is presented two equivalence relations, one for quasicrossed systems and another for (G,ϕ)-crossed products. Also the notion of graded-bimodule in order to study simple (G,ϕ)-crossed products is studied.