Twin signed domination numbers in directed graphs
Let D=(V,A) be a finite simple directed graph (shortly digraph). A function f:V⟶{−1,1} is called a twin signed dominating function (TSDF) if f(N⁻[v])≥1 and f(N⁺[v])≥1 for each vertex v∈V. The twin signed domination number of D is γs*(D)=min{ω(f)∣f is a TSDF of D}. In this paper, we initiate the stud...
Збережено в:
Дата: | 2017 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2017
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/156254 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Twin signed domination numbers in directed graphs / M. Atapour, S. Norouzian, S.M. Sheikholeslami, L. Volkmann // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 1. — С. 71-89. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-156254 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1562542019-06-19T01:26:42Z Twin signed domination numbers in directed graphs Atapour, M. Norouzian, S. Sheikholeslami, S.M. Volkmann, L. Let D=(V,A) be a finite simple directed graph (shortly digraph). A function f:V⟶{−1,1} is called a twin signed dominating function (TSDF) if f(N⁻[v])≥1 and f(N⁺[v])≥1 for each vertex v∈V. The twin signed domination number of D is γs*(D)=min{ω(f)∣f is a TSDF of D}. In this paper, we initiate the study of twin signed domination in digraphs and we present sharp lower bounds for γs*(D) in terms of the order, size and maximum and minimum indegrees and outdegrees. Some of our results are extensions of well-known lower bounds of the classical signed domination numbers of graphs. 2017 Article Twin signed domination numbers in directed graphs / M. Atapour, S. Norouzian, S.M. Sheikholeslami, L. Volkmann // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 1. — С. 71-89. — Бібліогр.: 10 назв. — англ. 1726-3255 2010 MSC:05C69. http://dspace.nbuv.gov.ua/handle/123456789/156254 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Let D=(V,A) be a finite simple directed graph (shortly digraph). A function f:V⟶{−1,1} is called a twin signed dominating function (TSDF) if f(N⁻[v])≥1 and f(N⁺[v])≥1 for each vertex v∈V. The twin signed domination number of D is γs*(D)=min{ω(f)∣f is a TSDF of D}. In this paper, we initiate the study of twin signed domination in digraphs and we present sharp lower bounds for γs*(D) in terms of the order, size and maximum and minimum indegrees and outdegrees. Some of our results are extensions of well-known lower bounds of the classical signed domination numbers of graphs. |
format |
Article |
author |
Atapour, M. Norouzian, S. Sheikholeslami, S.M. Volkmann, L. |
spellingShingle |
Atapour, M. Norouzian, S. Sheikholeslami, S.M. Volkmann, L. Twin signed domination numbers in directed graphs Algebra and Discrete Mathematics |
author_facet |
Atapour, M. Norouzian, S. Sheikholeslami, S.M. Volkmann, L. |
author_sort |
Atapour, M. |
title |
Twin signed domination numbers in directed graphs |
title_short |
Twin signed domination numbers in directed graphs |
title_full |
Twin signed domination numbers in directed graphs |
title_fullStr |
Twin signed domination numbers in directed graphs |
title_full_unstemmed |
Twin signed domination numbers in directed graphs |
title_sort |
twin signed domination numbers in directed graphs |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2017 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/156254 |
citation_txt |
Twin signed domination numbers in directed graphs / M. Atapour, S. Norouzian, S.M. Sheikholeslami, L. Volkmann // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 1. — С. 71-89. — Бібліогр.: 10 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT atapourm twinsigneddominationnumbersindirectedgraphs AT norouzians twinsigneddominationnumbersindirectedgraphs AT sheikholeslamism twinsigneddominationnumbersindirectedgraphs AT volkmannl twinsigneddominationnumbersindirectedgraphs |
first_indexed |
2023-05-20T17:49:17Z |
last_indexed |
2023-05-20T17:49:17Z |
_version_ |
1796154167872454656 |