On divergence and sums of derivations

Let K be an algebraically closed field of characteristic zero and A a field of algebraic functions in n variables over K. (i.e. A is a finite dimensional algebraic extension of the field K(x1,…,xn) ). If D is a K-derivation of A, then its divergence divD is an important geometric characteristic...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Chapovsky, E., Shevchyk, O.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2017
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/156256
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On divergence and sums of derivations / E. Chapovsky, O. Shevchyk // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 1. — С. 99-105. — Бібліогр.: 5 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-156256
record_format dspace
spelling irk-123456789-1562562019-06-19T01:27:29Z On divergence and sums of derivations Chapovsky, E. Shevchyk, O. Let K be an algebraically closed field of characteristic zero and A a field of algebraic functions in n variables over K. (i.e. A is a finite dimensional algebraic extension of the field K(x1,…,xn) ). If D is a K-derivation of A, then its divergence divD is an important geometric characteristic of D (D can be considered as a vector field with coefficients in A). A relation between expressions of divD in different transcendence bases of A is pointed out. It is also proved that every divergence-free derivation D on the polynomial ring K[x,y,z] is a sum of at most two jacobian derivation. 2017 Article On divergence and sums of derivations / E. Chapovsky, O. Shevchyk // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 1. — С. 99-105. — Бібліогр.: 5 назв. — англ. 1726-3255 2010 MSC:Primary 13N15; Secondary 13A99, 17B66. http://dspace.nbuv.gov.ua/handle/123456789/156256 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Let K be an algebraically closed field of characteristic zero and A a field of algebraic functions in n variables over K. (i.e. A is a finite dimensional algebraic extension of the field K(x1,…,xn) ). If D is a K-derivation of A, then its divergence divD is an important geometric characteristic of D (D can be considered as a vector field with coefficients in A). A relation between expressions of divD in different transcendence bases of A is pointed out. It is also proved that every divergence-free derivation D on the polynomial ring K[x,y,z] is a sum of at most two jacobian derivation.
format Article
author Chapovsky, E.
Shevchyk, O.
spellingShingle Chapovsky, E.
Shevchyk, O.
On divergence and sums of derivations
Algebra and Discrete Mathematics
author_facet Chapovsky, E.
Shevchyk, O.
author_sort Chapovsky, E.
title On divergence and sums of derivations
title_short On divergence and sums of derivations
title_full On divergence and sums of derivations
title_fullStr On divergence and sums of derivations
title_full_unstemmed On divergence and sums of derivations
title_sort on divergence and sums of derivations
publisher Інститут прикладної математики і механіки НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/156256
citation_txt On divergence and sums of derivations / E. Chapovsky, O. Shevchyk // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 1. — С. 99-105. — Бібліогр.: 5 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT chapovskye ondivergenceandsumsofderivations
AT shevchyko ondivergenceandsumsofderivations
first_indexed 2023-05-20T17:49:23Z
last_indexed 2023-05-20T17:49:23Z
_version_ 1796154168085315584