Differentially trivial and rigid right semi-artinian rings
We obtain a characterization of right semi-artinian rings which have only trivial derivations and prove that a rigid (i.e. has only the trivial ring endomorphisms) right semi-artinian ring R is a field or isomorphic to some Zpn .
Збережено в:
Дата: | 2004 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2004
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/156410 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Differentially trivial and rigid right semi-artinian rings / O.D. Artemovych // Algebra and Discrete Mathematics. — 2004. — Vol. 3, № 2. — С. 17–22. — Бібліогр.: 13 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-156410 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1564102019-06-19T01:28:31Z Differentially trivial and rigid right semi-artinian rings Artemovych, O.D. We obtain a characterization of right semi-artinian rings which have only trivial derivations and prove that a rigid (i.e. has only the trivial ring endomorphisms) right semi-artinian ring R is a field or isomorphic to some Zpn . 2004 Article Differentially trivial and rigid right semi-artinian rings / O.D. Artemovych // Algebra and Discrete Mathematics. — 2004. — Vol. 3, № 2. — С. 17–22. — Бібліогр.: 13 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 16W20, 13N15. http://dspace.nbuv.gov.ua/handle/123456789/156410 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We obtain a characterization of right semi-artinian rings which have only trivial derivations and prove that a rigid
(i.e. has only the trivial ring endomorphisms) right semi-artinian
ring R is a field or isomorphic to some Zpn . |
format |
Article |
author |
Artemovych, O.D. |
spellingShingle |
Artemovych, O.D. Differentially trivial and rigid right semi-artinian rings Algebra and Discrete Mathematics |
author_facet |
Artemovych, O.D. |
author_sort |
Artemovych, O.D. |
title |
Differentially trivial and rigid right semi-artinian rings |
title_short |
Differentially trivial and rigid right semi-artinian rings |
title_full |
Differentially trivial and rigid right semi-artinian rings |
title_fullStr |
Differentially trivial and rigid right semi-artinian rings |
title_full_unstemmed |
Differentially trivial and rigid right semi-artinian rings |
title_sort |
differentially trivial and rigid right semi-artinian rings |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2004 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/156410 |
citation_txt |
Differentially trivial and rigid right semi-artinian rings / O.D. Artemovych // Algebra and Discrete Mathematics. — 2004. — Vol. 3, № 2. — С. 17–22. — Бібліогр.: 13 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT artemovychod differentiallytrivialandrigidrightsemiartinianrings |
first_indexed |
2023-05-20T17:49:32Z |
last_indexed |
2023-05-20T17:49:32Z |
_version_ |
1796154187222876160 |