Two-step tilting for standardly stratified algebras

We study the class of standardly stratified algebras introduced by Cline, Parshall and Scott, and its subclass of the so-called weakly properly stratified algebras, which generalizes the class of properly stratified algebras introduced by Dlab. We characterize when the Ringel dual of a standardly...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2004
Автор: Frisk, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2004
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/156413
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Two-step tilting for standardly stratified algebras / A. Frisk // Algebra and Discrete Mathematics. — 2004. — Vol. 3, № 3. — С. 38–59. — Бібліогр.: 13 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-156413
record_format dspace
spelling irk-123456789-1564132019-06-19T01:28:46Z Two-step tilting for standardly stratified algebras Frisk, A. We study the class of standardly stratified algebras introduced by Cline, Parshall and Scott, and its subclass of the so-called weakly properly stratified algebras, which generalizes the class of properly stratified algebras introduced by Dlab. We characterize when the Ringel dual of a standardly stratified algebra is weakly properly stratified and show the existence of a two-step tilting module. This allows us to calculate the finitistic dimension of such algebras. Finally, we also give a construction showing that each finite partially pre-ordered set gives rise to a weakly properly stratified algebras with a simple preserving duality. 2004 Article Two-step tilting for standardly stratified algebras / A. Frisk // Algebra and Discrete Mathematics. — 2004. — Vol. 3, № 3. — С. 38–59. — Бібліогр.: 13 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 16E10, 16G10. http://dspace.nbuv.gov.ua/handle/123456789/156413 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We study the class of standardly stratified algebras introduced by Cline, Parshall and Scott, and its subclass of the so-called weakly properly stratified algebras, which generalizes the class of properly stratified algebras introduced by Dlab. We characterize when the Ringel dual of a standardly stratified algebra is weakly properly stratified and show the existence of a two-step tilting module. This allows us to calculate the finitistic dimension of such algebras. Finally, we also give a construction showing that each finite partially pre-ordered set gives rise to a weakly properly stratified algebras with a simple preserving duality.
format Article
author Frisk, A.
spellingShingle Frisk, A.
Two-step tilting for standardly stratified algebras
Algebra and Discrete Mathematics
author_facet Frisk, A.
author_sort Frisk, A.
title Two-step tilting for standardly stratified algebras
title_short Two-step tilting for standardly stratified algebras
title_full Two-step tilting for standardly stratified algebras
title_fullStr Two-step tilting for standardly stratified algebras
title_full_unstemmed Two-step tilting for standardly stratified algebras
title_sort two-step tilting for standardly stratified algebras
publisher Інститут прикладної математики і механіки НАН України
publishDate 2004
url http://dspace.nbuv.gov.ua/handle/123456789/156413
citation_txt Two-step tilting for standardly stratified algebras / A. Frisk // Algebra and Discrete Mathematics. — 2004. — Vol. 3, № 3. — С. 38–59. — Бібліогр.: 13 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT friska twosteptiltingforstandardlystratifiedalgebras
first_indexed 2023-05-20T17:49:33Z
last_indexed 2023-05-20T17:49:33Z
_version_ 1796154187537448960