Generalized equivalence of collections of matrices and common divisors of matrices
The collections (A1, ..., Ak) and (B1, ..., Bk) of matrices over an adequate ring are called generalized equivalent if Ai = UBiVi for some invertible matrices U and Vi , i = 1, ..., k. Some conditions are established under which the finite collection consisting of the matrix and its the divisor...
Збережено в:
Дата: | 2004 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2004
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/156417 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Generalized equivalence of collections of matrices and common divisors of matrices / V.M. Petrychkovych // Algebra and Discrete Mathematics. — 2004. — Vol. 3, № 2. — С. 84–91. — Бібліогр.: 14 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | The collections (A1, ..., Ak) and (B1, ..., Bk) of
matrices over an adequate ring are called generalized equivalent if
Ai = UBiVi for some invertible matrices U and Vi
, i = 1, ..., k.
Some conditions are established under which the finite collection
consisting of the matrix and its the divisors is generalized equivalent
to the collection of the matrices of the triangular and diagonal
forms. By using these forms the common divisors of matrices is
described. |
---|