On the spectrum and spectrum multiplicities of a sum of orthogonal projections

Let H be a unitary (finite dimensional Hilbert) space. It is known [1] that a self-adjoint operator on H, A = A* ≥ 0, is a sum of n orthogonal projections for some n ∈ N if and only if 1) tr A ∈ N∪{0}, 2) tr A ≥ dim Im A (Im A = AH)

Збережено в:
Бібліографічні деталі
Дата:2004
Автори: Kyrychenko, A.A., Samoılenko, Yu.S.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2004
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/156422
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the spectrum and spectrum multiplicities of a sum of orthogonal projections / A.A. Kyrychenko, Yu.S. Samoılenko // Algebra and Discrete Mathematics. — 2004. — Vol. 3, № 3. — С. 71–76. — Бібліогр.: 9 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-156422
record_format dspace
spelling irk-123456789-1564222019-06-19T01:28:39Z On the spectrum and spectrum multiplicities of a sum of orthogonal projections Kyrychenko, A.A. Samoılenko, Yu.S. Let H be a unitary (finite dimensional Hilbert) space. It is known [1] that a self-adjoint operator on H, A = A* ≥ 0, is a sum of n orthogonal projections for some n ∈ N if and only if 1) tr A ∈ N∪{0}, 2) tr A ≥ dim Im A (Im A = AH) 2004 Article On the spectrum and spectrum multiplicities of a sum of orthogonal projections / A.A. Kyrychenko, Yu.S. Samoılenko // Algebra and Discrete Mathematics. — 2004. — Vol. 3, № 3. — С. 71–76. — Бібліогр.: 9 назв. — англ. 1726-3255 http://dspace.nbuv.gov.ua/handle/123456789/156422 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Let H be a unitary (finite dimensional Hilbert) space. It is known [1] that a self-adjoint operator on H, A = A* ≥ 0, is a sum of n orthogonal projections for some n ∈ N if and only if 1) tr A ∈ N∪{0}, 2) tr A ≥ dim Im A (Im A = AH)
format Article
author Kyrychenko, A.A.
Samoılenko, Yu.S.
spellingShingle Kyrychenko, A.A.
Samoılenko, Yu.S.
On the spectrum and spectrum multiplicities of a sum of orthogonal projections
Algebra and Discrete Mathematics
author_facet Kyrychenko, A.A.
Samoılenko, Yu.S.
author_sort Kyrychenko, A.A.
title On the spectrum and spectrum multiplicities of a sum of orthogonal projections
title_short On the spectrum and spectrum multiplicities of a sum of orthogonal projections
title_full On the spectrum and spectrum multiplicities of a sum of orthogonal projections
title_fullStr On the spectrum and spectrum multiplicities of a sum of orthogonal projections
title_full_unstemmed On the spectrum and spectrum multiplicities of a sum of orthogonal projections
title_sort on the spectrum and spectrum multiplicities of a sum of orthogonal projections
publisher Інститут прикладної математики і механіки НАН України
publishDate 2004
url http://dspace.nbuv.gov.ua/handle/123456789/156422
citation_txt On the spectrum and spectrum multiplicities of a sum of orthogonal projections / A.A. Kyrychenko, Yu.S. Samoılenko // Algebra and Discrete Mathematics. — 2004. — Vol. 3, № 3. — С. 71–76. — Бібліогр.: 9 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT kyrychenkoaa onthespectrumandspectrummultiplicitiesofasumoforthogonalprojections
AT samoılenkoyus onthespectrumandspectrummultiplicitiesofasumoforthogonalprojections
first_indexed 2023-05-20T17:49:34Z
last_indexed 2023-05-20T17:49:34Z
_version_ 1796154188273549312