On the spectrum and spectrum multiplicities of a sum of orthogonal projections
Let H be a unitary (finite dimensional Hilbert) space. It is known [1] that a self-adjoint operator on H, A = A* ≥ 0, is a sum of n orthogonal projections for some n ∈ N if and only if 1) tr A ∈ N∪{0}, 2) tr A ≥ dim Im A (Im A = AH)
Збережено в:
Дата: | 2004 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2004
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/156422 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On the spectrum and spectrum multiplicities of a sum of orthogonal projections / A.A. Kyrychenko, Yu.S. Samoılenko // Algebra and Discrete Mathematics. — 2004. — Vol. 3, № 3. — С. 71–76. — Бібліогр.: 9 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-156422 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1564222019-06-19T01:28:39Z On the spectrum and spectrum multiplicities of a sum of orthogonal projections Kyrychenko, A.A. Samoılenko, Yu.S. Let H be a unitary (finite dimensional Hilbert) space. It is known [1] that a self-adjoint operator on H, A = A* ≥ 0, is a sum of n orthogonal projections for some n ∈ N if and only if 1) tr A ∈ N∪{0}, 2) tr A ≥ dim Im A (Im A = AH) 2004 Article On the spectrum and spectrum multiplicities of a sum of orthogonal projections / A.A. Kyrychenko, Yu.S. Samoılenko // Algebra and Discrete Mathematics. — 2004. — Vol. 3, № 3. — С. 71–76. — Бібліогр.: 9 назв. — англ. 1726-3255 http://dspace.nbuv.gov.ua/handle/123456789/156422 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Let H be a unitary (finite dimensional Hilbert) space. It is known [1] that a self-adjoint operator on H, A = A* ≥ 0, is a sum of n orthogonal projections for some n ∈ N if and only if 1) tr A ∈ N∪{0}, 2) tr A ≥ dim Im A (Im A = AH) |
format |
Article |
author |
Kyrychenko, A.A. Samoılenko, Yu.S. |
spellingShingle |
Kyrychenko, A.A. Samoılenko, Yu.S. On the spectrum and spectrum multiplicities of a sum of orthogonal projections Algebra and Discrete Mathematics |
author_facet |
Kyrychenko, A.A. Samoılenko, Yu.S. |
author_sort |
Kyrychenko, A.A. |
title |
On the spectrum and spectrum multiplicities of a sum of orthogonal projections |
title_short |
On the spectrum and spectrum multiplicities of a sum of orthogonal projections |
title_full |
On the spectrum and spectrum multiplicities of a sum of orthogonal projections |
title_fullStr |
On the spectrum and spectrum multiplicities of a sum of orthogonal projections |
title_full_unstemmed |
On the spectrum and spectrum multiplicities of a sum of orthogonal projections |
title_sort |
on the spectrum and spectrum multiplicities of a sum of orthogonal projections |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2004 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/156422 |
citation_txt |
On the spectrum and spectrum multiplicities of a sum of orthogonal projections / A.A. Kyrychenko, Yu.S. Samoılenko // Algebra and Discrete Mathematics. — 2004. — Vol. 3, № 3. — С. 71–76. — Бібліогр.: 9 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT kyrychenkoaa onthespectrumandspectrummultiplicitiesofasumoforthogonalprojections AT samoılenkoyus onthespectrumandspectrummultiplicitiesofasumoforthogonalprojections |
first_indexed |
2023-05-20T17:49:34Z |
last_indexed |
2023-05-20T17:49:34Z |
_version_ |
1796154188273549312 |