On wildness of idempotent generated algebras associated with extended Dynkin diagrams

Let Λ denote an extended Dynkin diagram with vertex set Λ0 = {0, 1,... ,n}. For a vertex i, denote by S(i) the set of vertices j such that there is an edge joining i and j; one assumes the diagram has a unique vertex p, say p = 0, with |S(p)| = 3. Further, denote by Λ \ 0 the full subgraph of Λ...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2004
Автор: Bondarenko, V.M.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2004
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/156457
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On wildness of idempotent generated algebras associated with extended Dynkin diagrams / V.M. Bondarenko // Algebra and Discrete Mathematics. — 2004. — Vol. 3, № 3. — С. 1–11. — Бібліогр.: 4 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-156457
record_format dspace
spelling irk-123456789-1564572019-06-19T01:27:48Z On wildness of idempotent generated algebras associated with extended Dynkin diagrams Bondarenko, V.M. Let Λ denote an extended Dynkin diagram with vertex set Λ0 = {0, 1,... ,n}. For a vertex i, denote by S(i) the set of vertices j such that there is an edge joining i and j; one assumes the diagram has a unique vertex p, say p = 0, with |S(p)| = 3. Further, denote by Λ \ 0 the full subgraph of Λ with vertex set Λ0 \ {0}. Let ∆ = (δi |i ∈ Λ0) ∈ Z |Λ0| be an imaginary root of Λ, and let k be a field of arbitrary characteristic (with unit element 1). We prove that if Λ is an extended Dynkin diagram of type D₄, E₆ or E₇, then the k-algebra Qk(Λ, ∆) with generators ei , i ∈ Λ0 \ {0}, and relations e 2 i = ei , eiej = 0 if i and j 6= i belong to the same connected component of Λ \ 0, and Pn i=1 δi ei = δ01 has wild representation time. 2004 Article On wildness of idempotent generated algebras associated with extended Dynkin diagrams / V.M. Bondarenko // Algebra and Discrete Mathematics. — 2004. — Vol. 3, № 3. — С. 1–11. — Бібліогр.: 4 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 16G60; 15A21, 46K10, 46L05. http://dspace.nbuv.gov.ua/handle/123456789/156457 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Let Λ denote an extended Dynkin diagram with vertex set Λ0 = {0, 1,... ,n}. For a vertex i, denote by S(i) the set of vertices j such that there is an edge joining i and j; one assumes the diagram has a unique vertex p, say p = 0, with |S(p)| = 3. Further, denote by Λ \ 0 the full subgraph of Λ with vertex set Λ0 \ {0}. Let ∆ = (δi |i ∈ Λ0) ∈ Z |Λ0| be an imaginary root of Λ, and let k be a field of arbitrary characteristic (with unit element 1). We prove that if Λ is an extended Dynkin diagram of type D₄, E₆ or E₇, then the k-algebra Qk(Λ, ∆) with generators ei , i ∈ Λ0 \ {0}, and relations e 2 i = ei , eiej = 0 if i and j 6= i belong to the same connected component of Λ \ 0, and Pn i=1 δi ei = δ01 has wild representation time.
format Article
author Bondarenko, V.M.
spellingShingle Bondarenko, V.M.
On wildness of idempotent generated algebras associated with extended Dynkin diagrams
Algebra and Discrete Mathematics
author_facet Bondarenko, V.M.
author_sort Bondarenko, V.M.
title On wildness of idempotent generated algebras associated with extended Dynkin diagrams
title_short On wildness of idempotent generated algebras associated with extended Dynkin diagrams
title_full On wildness of idempotent generated algebras associated with extended Dynkin diagrams
title_fullStr On wildness of idempotent generated algebras associated with extended Dynkin diagrams
title_full_unstemmed On wildness of idempotent generated algebras associated with extended Dynkin diagrams
title_sort on wildness of idempotent generated algebras associated with extended dynkin diagrams
publisher Інститут прикладної математики і механіки НАН України
publishDate 2004
url http://dspace.nbuv.gov.ua/handle/123456789/156457
citation_txt On wildness of idempotent generated algebras associated with extended Dynkin diagrams / V.M. Bondarenko // Algebra and Discrete Mathematics. — 2004. — Vol. 3, № 3. — С. 1–11. — Бібліогр.: 4 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT bondarenkovm onwildnessofidempotentgeneratedalgebrasassociatedwithextendeddynkindiagrams
first_indexed 2023-05-20T17:49:36Z
last_indexed 2023-05-20T17:49:36Z
_version_ 1796154189022232576