Kleinian singularities and algebras generated by elements that have given spectra and satisfy a scalar sum relation
We consider the algebras eiΠλ (Q)ei , where Πλ (Q) is the deformed preprojective algebra of weight λ and i is some vertex of Q, in the case where Q is an extended Dynkin diagram and λ lies on the hyperplane orthogonal to the minimal positive imaginary root δ. We prove that the center of eiΠλ (...
Збережено в:
Дата: | 2004 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2004
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/156459 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Kleinian singularities and algebras generated by elements that have given spectra and satisfy a scalar sum relation / A. Mellit // Algebra and Discrete Mathematics. — 2004. — Vol. 3, № 3. — С. 89–110. — Бібліогр.: 5 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We consider the algebras eiΠλ
(Q)ei
, where Πλ
(Q)
is the deformed preprojective algebra of weight λ and i is some vertex of Q, in the case where Q is an extended Dynkin diagram and
λ lies on the hyperplane orthogonal to the minimal positive imaginary root δ. We prove that the center of eiΠλ
(Q)ei
is isomorphic
to Oλ
(Q), a deformation of the coordinate ring of the Kleinian singularity that corresponds to Q. We also find a minimal k for which
a standard identity of degree k holds in eiΠλ
(Q)ei
. We prove that
the algebras AP₁,...,Pn;µ = Chx₁, . . . , xn|Pi(xi) = 0,
Pn
i=1 x₁ = µei
make a special case of the algebras ecΠλ
(Q)ec for star-like quivers
Q with the origin c. |
---|