Revisiting (logarithmic) scaling relations using renormalization group
We explicitly compute the critical exponents associated with logarithmic corrections (the so-called hatted exponents) starting from the renormalization group equations and the mean field behavior for a wide class of models at the upper critical behavior (for short and long range φ n -theories) an...
Збережено в:
Дата: | 2017 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
2017
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/156547 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Revisiting (logarithmic) scaling relations using renormalization group / J.J. Ruiz-Lorenzo // Condensed Matter Physics. — 2017. — Т. 20, № 1. — С. 13601: 1–10. — Бібліогр.: 25 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We explicitly compute the critical exponents associated with logarithmic corrections (the so-called hatted exponents) starting from the renormalization group equations and the mean field behavior for a wide class of models
at the upper critical behavior (for short and long range φ
n
-theories) and below it. This allows us to check the
scaling relations among these critical exponents obtained by analysing the complex singularities (Lee-Yang and
Fisher zeroes) of these models. Moreover, we have obtained an explicit method to compute the ϙˆ exponent
[defined by ξ ∼ L(logL)
ϙˆ
] and, finally, we have found a new derivation of the scaling law associated with it. |
---|