Revisiting (logarithmic) scaling relations using renormalization group

We explicitly compute the critical exponents associated with logarithmic corrections (the so-called hatted exponents) starting from the renormalization group equations and the mean field behavior for a wide class of models at the upper critical behavior (for short and long range φ n -theories) an...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автор: Ruiz-Lorenzo, J.J.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2017
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/156547
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Revisiting (logarithmic) scaling relations using renormalization group / J.J. Ruiz-Lorenzo // Condensed Matter Physics. — 2017. — Т. 20, № 1. — С. 13601: 1–10. — Бібліогр.: 25 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We explicitly compute the critical exponents associated with logarithmic corrections (the so-called hatted exponents) starting from the renormalization group equations and the mean field behavior for a wide class of models at the upper critical behavior (for short and long range φ n -theories) and below it. This allows us to check the scaling relations among these critical exponents obtained by analysing the complex singularities (Lee-Yang and Fisher zeroes) of these models. Moreover, we have obtained an explicit method to compute the ϙˆ exponent [defined by ξ ∼ L(logL) ϙˆ ] and, finally, we have found a new derivation of the scaling law associated with it.