BBGKY chain of kinetic equations, non-equilibrium statistical operator method and collective variable method in the statistical theory of non-equilibrium liquids

A chain of kinetic equations for non-equilibrium one-particle, two-particle and s-particle distribution functions of particles which take into account nonlinear hydrodynamic fluctuations is proposed. The method of Zubarev non-equilibrium statistical operator with projection is used. Nonlinear hydr...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Yukhnovskii, I.R., Hlushak, P.A., Tokarchuk, M.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2016
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/156560
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:BBGKY chain of kinetic equations, non-equilibrium statistical operator method and collective variable method in the statistical theory of non-equilibrium liquids / I.R. Yukhnovskii, P.A. Hlushak, M.V. Tokarchuk // Condensed Matter Physics. — 2016. — Т. 19, № 4. — С. 43705: 1–18. — Бібліогр.: 51 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:A chain of kinetic equations for non-equilibrium one-particle, two-particle and s-particle distribution functions of particles which take into account nonlinear hydrodynamic fluctuations is proposed. The method of Zubarev non-equilibrium statistical operator with projection is used. Nonlinear hydrodynamic fluctuations are described with non-equilibrium distribution function of collective variables that satisfies generalized Fokker-Planck equation. On the basis of the method of collective variables, a scheme of calculation of non-equilibrium structural distribution function of collective variables and their hydrodynamic speeds (above Gaussian approximation) contained in the generalized Fokker-Planck equation for the non-equilibrium distribution function of collective variables is proposed. Contributions of short- and long-range interactions between particles are separated, so that the short-range interactions (for example, the model of hard spheres) are described in the coordinate space, while the long-range interactions — in the space of collective variables. Short-ranged component is regarded as basic, and corresponds to the BBGKY chain of equations for the model of hard spheres.