Miniversal deformations of chains of linear mappings

V.I. Arnold [Russian Math. Surveys, 26 (no. 2), 1971, pp. 29–43] gave a miniversal deformation of matrices of linear operators; that is, a simple canonical form, to which not only a given square matrix A, but also the family of all matrices close to A, can be reduced by similarity transformations...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2005
Автори: Gaiduk, T.N., Sergeichuk, V.V., Zharko, N.A.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2005
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/156589
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Miniversal deformations of chains of linear mappings / T.N. Gaiduk, V.V. Sergeichuk, N.A. Zharko // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 1. — С. 47–61. — Бібліогр.: 10 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-156589
record_format dspace
spelling irk-123456789-1565892019-06-19T01:27:14Z Miniversal deformations of chains of linear mappings Gaiduk, T.N. Sergeichuk, V.V. Zharko, N.A. V.I. Arnold [Russian Math. Surveys, 26 (no. 2), 1971, pp. 29–43] gave a miniversal deformation of matrices of linear operators; that is, a simple canonical form, to which not only a given square matrix A, but also the family of all matrices close to A, can be reduced by similarity transformations smoothly depending on the entries of matrices. We study miniversal deformations of quiver representations and obtain a miniversal deformation of matrices of chains of linear mappings V₁ V₂ · · · Vt , where all Vi are complex or real vector spaces and each line denotes −→ or ←−. 2005 Article Miniversal deformations of chains of linear mappings / T.N. Gaiduk, V.V. Sergeichuk, N.A. Zharko // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 1. — С. 47–61. — Бібліогр.: 10 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 15A21; 16G20. http://dspace.nbuv.gov.ua/handle/123456789/156589 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description V.I. Arnold [Russian Math. Surveys, 26 (no. 2), 1971, pp. 29–43] gave a miniversal deformation of matrices of linear operators; that is, a simple canonical form, to which not only a given square matrix A, but also the family of all matrices close to A, can be reduced by similarity transformations smoothly depending on the entries of matrices. We study miniversal deformations of quiver representations and obtain a miniversal deformation of matrices of chains of linear mappings V₁ V₂ · · · Vt , where all Vi are complex or real vector spaces and each line denotes −→ or ←−.
format Article
author Gaiduk, T.N.
Sergeichuk, V.V.
Zharko, N.A.
spellingShingle Gaiduk, T.N.
Sergeichuk, V.V.
Zharko, N.A.
Miniversal deformations of chains of linear mappings
Algebra and Discrete Mathematics
author_facet Gaiduk, T.N.
Sergeichuk, V.V.
Zharko, N.A.
author_sort Gaiduk, T.N.
title Miniversal deformations of chains of linear mappings
title_short Miniversal deformations of chains of linear mappings
title_full Miniversal deformations of chains of linear mappings
title_fullStr Miniversal deformations of chains of linear mappings
title_full_unstemmed Miniversal deformations of chains of linear mappings
title_sort miniversal deformations of chains of linear mappings
publisher Інститут прикладної математики і механіки НАН України
publishDate 2005
url http://dspace.nbuv.gov.ua/handle/123456789/156589
citation_txt Miniversal deformations of chains of linear mappings / T.N. Gaiduk, V.V. Sergeichuk, N.A. Zharko // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 1. — С. 47–61. — Бібліогр.: 10 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT gaiduktn miniversaldeformationsofchainsoflinearmappings
AT sergeichukvv miniversaldeformationsofchainsoflinearmappings
AT zharkona miniversaldeformationsofchainsoflinearmappings
first_indexed 2023-05-20T17:49:46Z
last_indexed 2023-05-20T17:49:46Z
_version_ 1796154193471340544