Clones of full terms

In this paper the well-known connection between hyperidentities of an algebra and identities satisfied by the clone of this algebra is studied in a restricted setting, that of n-ary full hyperidentities and identities of the n-ary clone of term operations which are induced by full terms. We prov...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2004
Автори: Denecke, K., Jampachon, P.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2004
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/156591
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Clones of full terms / K. Denecke, P. Jampachon // Algebra and Discrete Mathematics. — 2004. — Vol. 3, № 4. — С. 1–11. — Бібліогр.: 3 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-156591
record_format dspace
spelling irk-123456789-1565912019-06-19T01:26:10Z Clones of full terms Denecke, K. Jampachon, P. In this paper the well-known connection between hyperidentities of an algebra and identities satisfied by the clone of this algebra is studied in a restricted setting, that of n-ary full hyperidentities and identities of the n-ary clone of term operations which are induced by full terms. We prove that the n-ary full terms form an algebraic structure which is called a Menger algebra of rank n. For a variety V , the set IdF n V of all its identities built up by full n-ary terms forms a congruence relation on that Menger algebra. If IdF n V is closed under all full hypersubstitutions, then the variety V is called n−F−solid. We will give a characterization of such varieties and apply the results to 2 − F−solid varieties of commutative groupoids. 2004 Article Clones of full terms / K. Denecke, P. Jampachon // Algebra and Discrete Mathematics. — 2004. — Vol. 3, № 4. — С. 1–11. — Бібліогр.: 3 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 08A40, 08A60, 08A02, 20M35. http://dspace.nbuv.gov.ua/handle/123456789/156591 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this paper the well-known connection between hyperidentities of an algebra and identities satisfied by the clone of this algebra is studied in a restricted setting, that of n-ary full hyperidentities and identities of the n-ary clone of term operations which are induced by full terms. We prove that the n-ary full terms form an algebraic structure which is called a Menger algebra of rank n. For a variety V , the set IdF n V of all its identities built up by full n-ary terms forms a congruence relation on that Menger algebra. If IdF n V is closed under all full hypersubstitutions, then the variety V is called n−F−solid. We will give a characterization of such varieties and apply the results to 2 − F−solid varieties of commutative groupoids.
format Article
author Denecke, K.
Jampachon, P.
spellingShingle Denecke, K.
Jampachon, P.
Clones of full terms
Algebra and Discrete Mathematics
author_facet Denecke, K.
Jampachon, P.
author_sort Denecke, K.
title Clones of full terms
title_short Clones of full terms
title_full Clones of full terms
title_fullStr Clones of full terms
title_full_unstemmed Clones of full terms
title_sort clones of full terms
publisher Інститут прикладної математики і механіки НАН України
publishDate 2004
url http://dspace.nbuv.gov.ua/handle/123456789/156591
citation_txt Clones of full terms / K. Denecke, P. Jampachon // Algebra and Discrete Mathematics. — 2004. — Vol. 3, № 4. — С. 1–11. — Бібліогр.: 3 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT deneckek clonesoffullterms
AT jampachonp clonesoffullterms
first_indexed 2023-05-20T17:49:46Z
last_indexed 2023-05-20T17:49:46Z
_version_ 1796154193577246720