2025-02-23T05:57:10-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-156595%22&qt=morelikethis&rows=5
2025-02-23T05:57:10-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-156595%22&qt=morelikethis&rows=5
2025-02-23T05:57:10-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T05:57:10-05:00 DEBUG: Deserialized SOLR response

A decomposition theorem for semiprime rings

A ring A is called an F DI-ring if there exists a decomposition of the identity of A in a sum of finite number of pairwise orthogonal primitive idempotents. We call a primitive idempotent e artinian if the ring eAe is Artinian. We prove that every semiprime F DI-ring is a direct product of a semi...

Full description

Saved in:
Bibliographic Details
Main Author: Khibina, M.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2005
Series:Algebra and Discrete Mathematics
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/156595
Tags: Add Tag
No Tags, Be the first to tag this record!
id irk-123456789-156595
record_format dspace
spelling irk-123456789-1565952019-06-19T01:28:18Z A decomposition theorem for semiprime rings Khibina, M. A ring A is called an F DI-ring if there exists a decomposition of the identity of A in a sum of finite number of pairwise orthogonal primitive idempotents. We call a primitive idempotent e artinian if the ring eAe is Artinian. We prove that every semiprime F DI-ring is a direct product of a semisimple Artinian ring and a semiprime F DI-ring whose identity decomposition doesn’t contain artinian idempotents. 2005 Article A decomposition theorem for semiprime rings / M. Khibina // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 1. — С. 62–68. — Бібліогр.: 4 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 16P40, 16G10. http://dspace.nbuv.gov.ua/handle/123456789/156595 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A ring A is called an F DI-ring if there exists a decomposition of the identity of A in a sum of finite number of pairwise orthogonal primitive idempotents. We call a primitive idempotent e artinian if the ring eAe is Artinian. We prove that every semiprime F DI-ring is a direct product of a semisimple Artinian ring and a semiprime F DI-ring whose identity decomposition doesn’t contain artinian idempotents.
format Article
author Khibina, M.
spellingShingle Khibina, M.
A decomposition theorem for semiprime rings
Algebra and Discrete Mathematics
author_facet Khibina, M.
author_sort Khibina, M.
title A decomposition theorem for semiprime rings
title_short A decomposition theorem for semiprime rings
title_full A decomposition theorem for semiprime rings
title_fullStr A decomposition theorem for semiprime rings
title_full_unstemmed A decomposition theorem for semiprime rings
title_sort decomposition theorem for semiprime rings
publisher Інститут прикладної математики і механіки НАН України
publishDate 2005
url http://dspace.nbuv.gov.ua/handle/123456789/156595
citation_txt A decomposition theorem for semiprime rings / M. Khibina // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 1. — С. 62–68. — Бібліогр.: 4 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT khibinam adecompositiontheoremforsemiprimerings
AT khibinam decompositiontheoremforsemiprimerings
first_indexed 2023-05-20T17:49:46Z
last_indexed 2023-05-20T17:49:46Z
_version_ 1796154193788010496