2025-02-23T05:57:10-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-156595%22&qt=morelikethis&rows=5
2025-02-23T05:57:10-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-156595%22&qt=morelikethis&rows=5
2025-02-23T05:57:10-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T05:57:10-05:00 DEBUG: Deserialized SOLR response
A decomposition theorem for semiprime rings
A ring A is called an F DI-ring if there exists a decomposition of the identity of A in a sum of finite number of pairwise orthogonal primitive idempotents. We call a primitive idempotent e artinian if the ring eAe is Artinian. We prove that every semiprime F DI-ring is a direct product of a semi...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2005
|
Series: | Algebra and Discrete Mathematics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/156595 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
irk-123456789-156595 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1565952019-06-19T01:28:18Z A decomposition theorem for semiprime rings Khibina, M. A ring A is called an F DI-ring if there exists a decomposition of the identity of A in a sum of finite number of pairwise orthogonal primitive idempotents. We call a primitive idempotent e artinian if the ring eAe is Artinian. We prove that every semiprime F DI-ring is a direct product of a semisimple Artinian ring and a semiprime F DI-ring whose identity decomposition doesn’t contain artinian idempotents. 2005 Article A decomposition theorem for semiprime rings / M. Khibina // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 1. — С. 62–68. — Бібліогр.: 4 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 16P40, 16G10. http://dspace.nbuv.gov.ua/handle/123456789/156595 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
A ring A is called an F DI-ring if there exists
a decomposition of the identity of A in a sum of finite number
of pairwise orthogonal primitive idempotents. We call a primitive idempotent e artinian if the ring eAe is Artinian. We prove
that every semiprime F DI-ring is a direct product of a semisimple
Artinian ring and a semiprime F DI-ring whose identity decomposition doesn’t contain artinian idempotents. |
format |
Article |
author |
Khibina, M. |
spellingShingle |
Khibina, M. A decomposition theorem for semiprime rings Algebra and Discrete Mathematics |
author_facet |
Khibina, M. |
author_sort |
Khibina, M. |
title |
A decomposition theorem for semiprime rings |
title_short |
A decomposition theorem for semiprime rings |
title_full |
A decomposition theorem for semiprime rings |
title_fullStr |
A decomposition theorem for semiprime rings |
title_full_unstemmed |
A decomposition theorem for semiprime rings |
title_sort |
decomposition theorem for semiprime rings |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2005 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/156595 |
citation_txt |
A decomposition theorem for semiprime rings / M. Khibina // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 1. — С. 62–68. — Бібліогр.: 4 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT khibinam adecompositiontheoremforsemiprimerings AT khibinam decompositiontheoremforsemiprimerings |
first_indexed |
2023-05-20T17:49:46Z |
last_indexed |
2023-05-20T17:49:46Z |
_version_ |
1796154193788010496 |