2025-02-23T03:00:16-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-156603%22&qt=morelikethis&rows=5
2025-02-23T03:00:16-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-156603%22&qt=morelikethis&rows=5
2025-02-23T03:00:16-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T03:00:16-05:00 DEBUG: Deserialized SOLR response

Correct classes of modules

For a ring R, call a class C of R-modules (pure-) mono-correct if for any M, N ∈ C the existence of (pure) monomorphisms M → N and N → M implies M ≃ N. Extending results and ideas of Rososhek from rings to modules, it is shown that, for an R-module M, the class σ[M] of all M-subgenerated modules...

Full description

Saved in:
Bibliographic Details
Main Author: Wisbauer, R.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2004
Series:Algebra and Discrete Mathematics
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/156603
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For a ring R, call a class C of R-modules (pure-) mono-correct if for any M, N ∈ C the existence of (pure) monomorphisms M → N and N → M implies M ≃ N. Extending results and ideas of Rososhek from rings to modules, it is shown that, for an R-module M, the class σ[M] of all M-subgenerated modules is mono-correct if and only if M is semisimple, and the class of all weakly M-injective modules is mono-correct if and only if M is locally noetherian. Applying this to the functor ring of R-Mod provides a new proof that R is left pure semisimple if and only if R-Mod is pure-mono-correct. Furthermore, the class of pure-injective Rmodules is always pure-mono-correct, and it is mono-correct if and only if R is von Neumann regular. The dual notion epi-correctness is also considered and it is shown that a ring R is left perfect if and only if the class of all flat R-modules is epi-correct. At the end some open problems are stated.