2025-02-21T07:18:16-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-156607%22&qt=morelikethis&rows=5
2025-02-21T07:18:16-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-156607%22&qt=morelikethis&rows=5
2025-02-21T07:18:16-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-21T07:18:16-05:00 DEBUG: Deserialized SOLR response

Diagonalizability theorems for matrices over rings with finite stable range

We construct the theory of diagonalizability for matrices over Bezout ring with finite stable range. It is shown that every commutative Bezout ring with compact minimal prime spectrum is Hermite. It is also shown that a principal ideal domain with stable range 1 is Euclidean domain, and every sem...

Full description

Saved in:
Bibliographic Details
Main Author: Zabavsky, B.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2005
Series:Algebra and Discrete Mathematics
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/156607
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We construct the theory of diagonalizability for matrices over Bezout ring with finite stable range. It is shown that every commutative Bezout ring with compact minimal prime spectrum is Hermite. It is also shown that a principal ideal domain with stable range 1 is Euclidean domain, and every semilocal principal ideal domain is Euclidean domain. It is proved that every matrix over an elementary divisor ring can be reduced to "almost" diagonal matrix by elementary transformations.