Diagonalizability theorems for matrices over rings with finite stable range

We construct the theory of diagonalizability for matrices over Bezout ring with finite stable range. It is shown that every commutative Bezout ring with compact minimal prime spectrum is Hermite. It is also shown that a principal ideal domain with stable range 1 is Euclidean domain, and every sem...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2005
Автор: Zabavsky, B.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2005
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/156607
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Diagonalizability theorems for matrices over rings with finite stable range / B. Zabavsky // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 1. — С. 151–165. — Бібліогр.: 35 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-156607
record_format dspace
spelling irk-123456789-1566072019-06-19T01:28:05Z Diagonalizability theorems for matrices over rings with finite stable range Zabavsky, B. We construct the theory of diagonalizability for matrices over Bezout ring with finite stable range. It is shown that every commutative Bezout ring with compact minimal prime spectrum is Hermite. It is also shown that a principal ideal domain with stable range 1 is Euclidean domain, and every semilocal principal ideal domain is Euclidean domain. It is proved that every matrix over an elementary divisor ring can be reduced to "almost" diagonal matrix by elementary transformations. 2005 Article Diagonalizability theorems for matrices over rings with finite stable range / B. Zabavsky // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 1. — С. 151–165. — Бібліогр.: 35 назв. — англ. 1726-3255 http://dspace.nbuv.gov.ua/handle/123456789/156607 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We construct the theory of diagonalizability for matrices over Bezout ring with finite stable range. It is shown that every commutative Bezout ring with compact minimal prime spectrum is Hermite. It is also shown that a principal ideal domain with stable range 1 is Euclidean domain, and every semilocal principal ideal domain is Euclidean domain. It is proved that every matrix over an elementary divisor ring can be reduced to "almost" diagonal matrix by elementary transformations.
format Article
author Zabavsky, B.
spellingShingle Zabavsky, B.
Diagonalizability theorems for matrices over rings with finite stable range
Algebra and Discrete Mathematics
author_facet Zabavsky, B.
author_sort Zabavsky, B.
title Diagonalizability theorems for matrices over rings with finite stable range
title_short Diagonalizability theorems for matrices over rings with finite stable range
title_full Diagonalizability theorems for matrices over rings with finite stable range
title_fullStr Diagonalizability theorems for matrices over rings with finite stable range
title_full_unstemmed Diagonalizability theorems for matrices over rings with finite stable range
title_sort diagonalizability theorems for matrices over rings with finite stable range
publisher Інститут прикладної математики і механіки НАН України
publishDate 2005
url http://dspace.nbuv.gov.ua/handle/123456789/156607
citation_txt Diagonalizability theorems for matrices over rings with finite stable range / B. Zabavsky // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 1. — С. 151–165. — Бібліогр.: 35 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT zabavskyb diagonalizabilitytheoremsformatricesoverringswithfinitestablerange
first_indexed 2023-05-20T17:50:07Z
last_indexed 2023-05-20T17:50:07Z
_version_ 1796154194735923200