On representation type of a pair of posets with involution
In this paper we consider the problem on classifying the representations of a pair of posets with involution. We prove that if one of these is a chain of length at least 4 with trivial involution and the other is with nontrivial one, then the pair is tame ⇔ it is of finite type ⇔ the poset with n...
Збережено в:
Дата: | 2005 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2005
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/156608 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On representation type of a pair of posets with involution / V.M. Bondarenko // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 1. — С. 1–7. — Бібліогр.: 12 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | In this paper we consider the problem on classifying the representations of a pair of posets with involution. We
prove that if one of these is a chain of length at least 4 with trivial
involution and the other is with nontrivial one, then the pair is
tame ⇔ it is of finite type ⇔ the poset with nontrivial involution
is a ∗-semichain (∗ being the involution). The case that each of the
posets with involution is not a chain with trivial one was considered by the author earlier. In proving our result we do not use the
known technically difficult results on representation type of posets
with involution. |
---|