2025-02-23T06:47:11-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-156609%22&qt=morelikethis&rows=5
2025-02-23T06:47:11-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-156609%22&qt=morelikethis&rows=5
2025-02-23T06:47:11-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T06:47:11-05:00 DEBUG: Deserialized SOLR response
Gorenstein matrices
Let A = (aij ) be an integral matrix. We say that A is (0, 1, 2)-matrix if aij ∈ {0, 1, 2}. There exists the Gorenstein (0, 1, 2)-matrix for any permutation σ on the set {1, . . . , n} without fixed elements. For every positive integer n there exists the Gorenstein cyclic (0, 1, 2)-matrix An such...
Saved in:
Main Authors: | Dokuchaev, M.A., Kirichenko, V.V., Zelensky, A.V., Zhuravlev, V.N. |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2005
|
Series: | Algebra and Discrete Mathematics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/156609 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
2025-02-23T06:47:11-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-156609%22&qt=morelikethis
2025-02-23T06:47:11-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-156609%22&qt=morelikethis
2025-02-23T06:47:11-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T06:47:11-05:00 DEBUG: Deserialized SOLR response
Similar Items
-
Gorenstein Latin squares
by: Dokuchaev, M.A., et al.
Published: (2008) -
Exponent matrices and Frobenius rings
by: Dokuchaev, M.A., et al.
Published: (2014) -
Quivers of 3×3 exponent matrices
by: Dokuchaev, M., et al.
Published: (2015) -
Quivers of 3×3-exponent matrices
by: Dokuchaev, M., et al.
Published: (2015) -
Quivers of 3 Ч 3-exponent matrices
by: M. Dokuchaev, et al.
Published: (2015)