2025-02-23T00:30:05-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-156618%22&qt=morelikethis&rows=5
2025-02-23T00:30:05-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-156618%22&qt=morelikethis&rows=5
2025-02-23T00:30:05-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T00:30:05-05:00 DEBUG: Deserialized SOLR response
On strongly graded Gorestein orders
Let G be a finite group and let Λ = ⊕g∈GΛg be a strongly G-graded R-algebra, where R is a commutative ring with unity. We prove that if R is a Dedekind domain with quotient field K, Λ is an R-order in a separable K-algebra such that the algebra Λ1 is a Gorenstein R-order, then Λ is also a Gorens...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2005
|
Series: | Algebra and Discrete Mathematics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/156618 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
irk-123456789-156618 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1566182019-06-20T01:27:42Z On strongly graded Gorestein orders Theohari-Apostolidi, Th. Vavatsoulas, H. Let G be a finite group and let Λ = ⊕g∈GΛg be a strongly G-graded R-algebra, where R is a commutative ring with unity. We prove that if R is a Dedekind domain with quotient field K, Λ is an R-order in a separable K-algebra such that the algebra Λ1 is a Gorenstein R-order, then Λ is also a Gorenstein R-order. Moreover, we prove that the induction functor ind : ModΛH → ModΛ defined in Section 3, for a subgroup H of G, commutes with the standard duality functor. 2005 Article On strongly graded Gorestein orders / Th. Theohari-Apostolidi, H. Vavatsoulas // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 2. — С. 80–89. — Бібліогр.: 11 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 16H05, 16G30, 16S35, 16G10, 16W50. http://dspace.nbuv.gov.ua/handle/123456789/156618 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Let G be a finite group and let Λ = ⊕g∈GΛg be a
strongly G-graded R-algebra, where R is a commutative ring with
unity. We prove that if R is a Dedekind domain with quotient field
K, Λ is an R-order in a separable K-algebra such that the algebra
Λ1 is a Gorenstein R-order, then Λ is also a Gorenstein R-order.
Moreover, we prove that the induction functor ind : ModΛH →
ModΛ defined in Section 3, for a subgroup H of G, commutes with
the standard duality functor. |
format |
Article |
author |
Theohari-Apostolidi, Th. Vavatsoulas, H. |
spellingShingle |
Theohari-Apostolidi, Th. Vavatsoulas, H. On strongly graded Gorestein orders Algebra and Discrete Mathematics |
author_facet |
Theohari-Apostolidi, Th. Vavatsoulas, H. |
author_sort |
Theohari-Apostolidi, Th. |
title |
On strongly graded Gorestein orders |
title_short |
On strongly graded Gorestein orders |
title_full |
On strongly graded Gorestein orders |
title_fullStr |
On strongly graded Gorestein orders |
title_full_unstemmed |
On strongly graded Gorestein orders |
title_sort |
on strongly graded gorestein orders |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2005 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/156618 |
citation_txt |
On strongly graded Gorestein orders / Th. Theohari-Apostolidi, H. Vavatsoulas // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 2. — С. 80–89. — Бібліогр.: 11 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT theohariapostolidith onstronglygradedgoresteinorders AT vavatsoulash onstronglygradedgoresteinorders |
first_indexed |
2023-05-20T17:50:17Z |
last_indexed |
2023-05-20T17:50:17Z |
_version_ |
1796154208659963904 |