Some properties of primitive matrices over Bezout B-domain
The properties of primitive matrices (matrices for which the greatest common divisor of the minors of maximal order is equal to 1) over Bezout B - domain, i.e. commutative domain finitely generated principal ideal in which for all a,b,c with (a,b,c) = 1,c 6= 0, there exists element r ∈ R, such t...
Збережено в:
Дата: | 2005 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2005
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/156626 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Some properties of primitive matrices over Bezout B-domain / V.P. Shchedryk // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 2. — С. 46–57. — Бібліогр.: 14 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | The properties of primitive matrices (matrices
for which the greatest common divisor of the minors of maximal
order is equal to 1) over Bezout B - domain, i.e. commutative
domain finitely generated principal ideal in which for all a,b,c with
(a,b,c) = 1,c 6= 0, there exists element r ∈ R, such that (a+rb,c) =
1 is investigated. The results obtained enable to describe invariants
transforming matrices, i.e. matrices which reduce the given matrix
to its canonical diagonal form. |
---|