Weak factorization systems and fibrewise regular injectivity for actions of pomonoids on posets

Let S be a pomonoid. In this paper, Pos-S, the category of S-posets and S-poset maps, is considered. One of the main aims of this paper is to draw attention to the notion of weak factorization systems in Pos-S. We show that if S is a pogroup, or the identity element of S is the bottom (or top) eleme...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Farsad, F., Madanshekaf, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2017
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/156632
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Weak factorization systems and fibrewise regular injectivity for actions of pomonoids on posets / F. Farsad, A. Madanshekaf // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 2. — С. 235-249. — Бібліогр.: 14 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-156632
record_format dspace
spelling irk-123456789-1566322019-06-19T01:26:25Z Weak factorization systems and fibrewise regular injectivity for actions of pomonoids on posets Farsad, F. Madanshekaf, A. Let S be a pomonoid. In this paper, Pos-S, the category of S-posets and S-poset maps, is considered. One of the main aims of this paper is to draw attention to the notion of weak factorization systems in Pos-S. We show that if S is a pogroup, or the identity element of S is the bottom (or top) element, then (DU,SplitEpi) is a weak factorization system in Pos-S, where DU and SplitEpi are the class of du-closed embedding S-poset maps and the class of all split S-poset epimorphisms, respectively. Among other things, we use a fibrewise notion of complete posets in the category Pos-S/B under a particular case that B has trivial action. We show that every regular injective object in Pos-S/B is topological functor. Finally, we characterize them under a special case, where S is a pogroup. 2017 Article Weak factorization systems and fibrewise regular injectivity for actions of pomonoids on posets / F. Farsad, A. Madanshekaf // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 2. — С. 235-249. — Бібліогр.: 14 назв. — англ. 1726-3255 2010 MSC:06F05, 18A32, 18G05, 20M30, 20M50. http://dspace.nbuv.gov.ua/handle/123456789/156632 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Let S be a pomonoid. In this paper, Pos-S, the category of S-posets and S-poset maps, is considered. One of the main aims of this paper is to draw attention to the notion of weak factorization systems in Pos-S. We show that if S is a pogroup, or the identity element of S is the bottom (or top) element, then (DU,SplitEpi) is a weak factorization system in Pos-S, where DU and SplitEpi are the class of du-closed embedding S-poset maps and the class of all split S-poset epimorphisms, respectively. Among other things, we use a fibrewise notion of complete posets in the category Pos-S/B under a particular case that B has trivial action. We show that every regular injective object in Pos-S/B is topological functor. Finally, we characterize them under a special case, where S is a pogroup.
format Article
author Farsad, F.
Madanshekaf, A.
spellingShingle Farsad, F.
Madanshekaf, A.
Weak factorization systems and fibrewise regular injectivity for actions of pomonoids on posets
Algebra and Discrete Mathematics
author_facet Farsad, F.
Madanshekaf, A.
author_sort Farsad, F.
title Weak factorization systems and fibrewise regular injectivity for actions of pomonoids on posets
title_short Weak factorization systems and fibrewise regular injectivity for actions of pomonoids on posets
title_full Weak factorization systems and fibrewise regular injectivity for actions of pomonoids on posets
title_fullStr Weak factorization systems and fibrewise regular injectivity for actions of pomonoids on posets
title_full_unstemmed Weak factorization systems and fibrewise regular injectivity for actions of pomonoids on posets
title_sort weak factorization systems and fibrewise regular injectivity for actions of pomonoids on posets
publisher Інститут прикладної математики і механіки НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/156632
citation_txt Weak factorization systems and fibrewise regular injectivity for actions of pomonoids on posets / F. Farsad, A. Madanshekaf // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 2. — С. 235-249. — Бібліогр.: 14 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT farsadf weakfactorizationsystemsandfibrewiseregularinjectivityforactionsofpomonoidsonposets
AT madanshekafa weakfactorizationsystemsandfibrewiseregularinjectivityforactionsofpomonoidsonposets
first_indexed 2023-05-20T17:50:07Z
last_indexed 2023-05-20T17:50:07Z
_version_ 1796154201992069120