On the genus of the annhilator graph of a commutative ring

Let R be a commutative ring and Z(R)* be its set of non-zero zero-divisors. The annihilator graph of a commutative ring R is the simple undirected graph AG(R) with vertices Z(R)*, and two distinct vertices x and y are adjacent if and only if ann(xy)≠ann(x)∪ann(y). The notion of annihilator graph has...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Chelvam, T.T., Selvakumar, K.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2017
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/156637
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the genus of the annhilator graph of a commutative ring / T.T. Chelvam, K. Selvakumar // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 2. — С. 191-208. — Бібліогр.: 26 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-156637
record_format dspace
spelling irk-123456789-1566372019-06-19T01:27:05Z On the genus of the annhilator graph of a commutative ring Chelvam, T.T. Selvakumar, K. Let R be a commutative ring and Z(R)* be its set of non-zero zero-divisors. The annihilator graph of a commutative ring R is the simple undirected graph AG(R) with vertices Z(R)*, and two distinct vertices x and y are adjacent if and only if ann(xy)≠ann(x)∪ann(y). The notion of annihilator graph has been introduced and studied by A. Badawi [7]. In this paper, we determine isomorphism classes of finite commutative rings with identity whose AG(R) has genus less or equal to one 2017 Article On the genus of the annhilator graph of a commutative ring / T.T. Chelvam, K. Selvakumar // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 2. — С. 191-208. — Бібліогр.: 26 назв. — англ. 1726-3255 2010 MSC:05C99, 05C15, 13A99. http://dspace.nbuv.gov.ua/handle/123456789/156637 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Let R be a commutative ring and Z(R)* be its set of non-zero zero-divisors. The annihilator graph of a commutative ring R is the simple undirected graph AG(R) with vertices Z(R)*, and two distinct vertices x and y are adjacent if and only if ann(xy)≠ann(x)∪ann(y). The notion of annihilator graph has been introduced and studied by A. Badawi [7]. In this paper, we determine isomorphism classes of finite commutative rings with identity whose AG(R) has genus less or equal to one
format Article
author Chelvam, T.T.
Selvakumar, K.
spellingShingle Chelvam, T.T.
Selvakumar, K.
On the genus of the annhilator graph of a commutative ring
Algebra and Discrete Mathematics
author_facet Chelvam, T.T.
Selvakumar, K.
author_sort Chelvam, T.T.
title On the genus of the annhilator graph of a commutative ring
title_short On the genus of the annhilator graph of a commutative ring
title_full On the genus of the annhilator graph of a commutative ring
title_fullStr On the genus of the annhilator graph of a commutative ring
title_full_unstemmed On the genus of the annhilator graph of a commutative ring
title_sort on the genus of the annhilator graph of a commutative ring
publisher Інститут прикладної математики і механіки НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/156637
citation_txt On the genus of the annhilator graph of a commutative ring / T.T. Chelvam, K. Selvakumar // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 2. — С. 191-208. — Бібліогр.: 26 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT chelvamtt onthegenusoftheannhilatorgraphofacommutativering
AT selvakumark onthegenusoftheannhilatorgraphofacommutativering
first_indexed 2023-05-20T17:50:08Z
last_indexed 2023-05-20T17:50:08Z
_version_ 1796154202522648576