Total global neighbourhood domination

A subset D of the vertex set of a connected graph G is called a total global neighbourhood dominating set (tgnd-set) of G if and only if D is a total dominating set of G as well as GN, where GN is the neighbourhood graph of G. The total global neighbourhood domination number (tgnd-number) is the min...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Siva Rama Raju, S.V., Nagaraja Rao, I.H.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2017
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/156643
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Total global neighbourhood domination / S.V. Siva Rama Raju, I.H. Nagaraja Rao // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 2. — С. 320-330. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-156643
record_format dspace
spelling irk-123456789-1566432019-06-19T01:27:51Z Total global neighbourhood domination Siva Rama Raju, S.V. Nagaraja Rao, I.H. A subset D of the vertex set of a connected graph G is called a total global neighbourhood dominating set (tgnd-set) of G if and only if D is a total dominating set of G as well as GN, where GN is the neighbourhood graph of G. The total global neighbourhood domination number (tgnd-number) is the minimum cardinality of a total global neighbourhood dominating set of G and is denoted by γtgn(G). In this paper sharp bounds for γtgn are obtained. Exact values of this number for paths and cycles are presented as well. The characterization result for a subset of the vertex set of G to be a total global neighbourhood dominating set for G is given and also characterized the graphs of order n(≥3) having tgnd-numbers 2,n−1,n. 2017 Article Total global neighbourhood domination / S.V. Siva Rama Raju, I.H. Nagaraja Rao // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 2. — С. 320-330. — Бібліогр.: 8 назв. — англ. 1726-3255 2010 MSC:05C69. http://dspace.nbuv.gov.ua/handle/123456789/156643 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A subset D of the vertex set of a connected graph G is called a total global neighbourhood dominating set (tgnd-set) of G if and only if D is a total dominating set of G as well as GN, where GN is the neighbourhood graph of G. The total global neighbourhood domination number (tgnd-number) is the minimum cardinality of a total global neighbourhood dominating set of G and is denoted by γtgn(G). In this paper sharp bounds for γtgn are obtained. Exact values of this number for paths and cycles are presented as well. The characterization result for a subset of the vertex set of G to be a total global neighbourhood dominating set for G is given and also characterized the graphs of order n(≥3) having tgnd-numbers 2,n−1,n.
format Article
author Siva Rama Raju, S.V.
Nagaraja Rao, I.H.
spellingShingle Siva Rama Raju, S.V.
Nagaraja Rao, I.H.
Total global neighbourhood domination
Algebra and Discrete Mathematics
author_facet Siva Rama Raju, S.V.
Nagaraja Rao, I.H.
author_sort Siva Rama Raju, S.V.
title Total global neighbourhood domination
title_short Total global neighbourhood domination
title_full Total global neighbourhood domination
title_fullStr Total global neighbourhood domination
title_full_unstemmed Total global neighbourhood domination
title_sort total global neighbourhood domination
publisher Інститут прикладної математики і механіки НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/156643
citation_txt Total global neighbourhood domination / S.V. Siva Rama Raju, I.H. Nagaraja Rao // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 2. — С. 320-330. — Бібліогр.: 8 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT sivaramarajusv totalglobalneighbourhooddomination
AT nagarajaraoih totalglobalneighbourhooddomination
first_indexed 2023-05-20T17:50:09Z
last_indexed 2023-05-20T17:50:09Z
_version_ 1796154203154939904