Jacobsthal-Lucas series and their applications

In this paper we study the properties of positive series such that its terms are reciprocals of the elements of Jacobsthal-Lucas sequence. In particular, we consider the properties of the set of incomplete sums as well as their applications. We prove that the set of incomplete sums of this series is...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Pratsiovytyi, M., Karvatsky, D.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2017
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/156645
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Jacobsthal-Lucas series and their applications / M. Pratsiovytyi, D. Karvatsky // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 1. — С. 169-180. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-156645
record_format dspace
spelling irk-123456789-1566452019-06-19T01:26:44Z Jacobsthal-Lucas series and their applications Pratsiovytyi, M. Karvatsky, D. In this paper we study the properties of positive series such that its terms are reciprocals of the elements of Jacobsthal-Lucas sequence. In particular, we consider the properties of the set of incomplete sums as well as their applications. We prove that the set of incomplete sums of this series is a nowhere dense set of positive Lebesgue measure. Also we study singular random variables of Cantor type related to Jacobsthal-Lucas sequence. 2017 Article Jacobsthal-Lucas series and their applications / M. Pratsiovytyi, D. Karvatsky // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 1. — С. 169-180. — Бібліогр.: 8 назв. — англ. 1726-3255 2010 MSC:11B83, 11B39, 60G50. http://dspace.nbuv.gov.ua/handle/123456789/156645 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this paper we study the properties of positive series such that its terms are reciprocals of the elements of Jacobsthal-Lucas sequence. In particular, we consider the properties of the set of incomplete sums as well as their applications. We prove that the set of incomplete sums of this series is a nowhere dense set of positive Lebesgue measure. Also we study singular random variables of Cantor type related to Jacobsthal-Lucas sequence.
format Article
author Pratsiovytyi, M.
Karvatsky, D.
spellingShingle Pratsiovytyi, M.
Karvatsky, D.
Jacobsthal-Lucas series and their applications
Algebra and Discrete Mathematics
author_facet Pratsiovytyi, M.
Karvatsky, D.
author_sort Pratsiovytyi, M.
title Jacobsthal-Lucas series and their applications
title_short Jacobsthal-Lucas series and their applications
title_full Jacobsthal-Lucas series and their applications
title_fullStr Jacobsthal-Lucas series and their applications
title_full_unstemmed Jacobsthal-Lucas series and their applications
title_sort jacobsthal-lucas series and their applications
publisher Інститут прикладної математики і механіки НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/156645
citation_txt Jacobsthal-Lucas series and their applications / M. Pratsiovytyi, D. Karvatsky // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 1. — С. 169-180. — Бібліогр.: 8 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT pratsiovytyim jacobsthallucasseriesandtheirapplications
AT karvatskyd jacobsthallucasseriesandtheirapplications
first_indexed 2023-05-20T17:49:48Z
last_indexed 2023-05-20T17:49:48Z
_version_ 1796154172560637952