Jacobsthal-Lucas series and their applications
In this paper we study the properties of positive series such that its terms are reciprocals of the elements of Jacobsthal-Lucas sequence. In particular, we consider the properties of the set of incomplete sums as well as their applications. We prove that the set of incomplete sums of this series is...
Збережено в:
Дата: | 2017 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2017
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/156645 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Jacobsthal-Lucas series and their applications / M. Pratsiovytyi, D. Karvatsky // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 1. — С. 169-180. — Бібліогр.: 8 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-156645 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1566452019-06-19T01:26:44Z Jacobsthal-Lucas series and their applications Pratsiovytyi, M. Karvatsky, D. In this paper we study the properties of positive series such that its terms are reciprocals of the elements of Jacobsthal-Lucas sequence. In particular, we consider the properties of the set of incomplete sums as well as their applications. We prove that the set of incomplete sums of this series is a nowhere dense set of positive Lebesgue measure. Also we study singular random variables of Cantor type related to Jacobsthal-Lucas sequence. 2017 Article Jacobsthal-Lucas series and their applications / M. Pratsiovytyi, D. Karvatsky // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 1. — С. 169-180. — Бібліогр.: 8 назв. — англ. 1726-3255 2010 MSC:11B83, 11B39, 60G50. http://dspace.nbuv.gov.ua/handle/123456789/156645 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
In this paper we study the properties of positive series such that its terms are reciprocals of the elements of Jacobsthal-Lucas sequence. In particular, we consider the properties of the set of incomplete sums as well as their applications. We prove that the set of incomplete sums of this series is a nowhere dense set of positive Lebesgue measure. Also we study singular random variables of Cantor type related to Jacobsthal-Lucas sequence. |
format |
Article |
author |
Pratsiovytyi, M. Karvatsky, D. |
spellingShingle |
Pratsiovytyi, M. Karvatsky, D. Jacobsthal-Lucas series and their applications Algebra and Discrete Mathematics |
author_facet |
Pratsiovytyi, M. Karvatsky, D. |
author_sort |
Pratsiovytyi, M. |
title |
Jacobsthal-Lucas series and their applications |
title_short |
Jacobsthal-Lucas series and their applications |
title_full |
Jacobsthal-Lucas series and their applications |
title_fullStr |
Jacobsthal-Lucas series and their applications |
title_full_unstemmed |
Jacobsthal-Lucas series and their applications |
title_sort |
jacobsthal-lucas series and their applications |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2017 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/156645 |
citation_txt |
Jacobsthal-Lucas series and their applications / M. Pratsiovytyi, D. Karvatsky // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 1. — С. 169-180. — Бібліогр.: 8 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT pratsiovytyim jacobsthallucasseriesandtheirapplications AT karvatskyd jacobsthallucasseriesandtheirapplications |
first_indexed |
2023-05-20T17:49:48Z |
last_indexed |
2023-05-20T17:49:48Z |
_version_ |
1796154172560637952 |