Rashba spin-orbit interaction enhanced by graphene in-plane deformations
Graphene consists in a single-layer carbon crystal where 2pz electrons display a linear dispersion relation in the vicinity of the Fermi level, conveniently described by a massless Dirac equation in 2+1 spacetime. Spin-orbit effects open a gap in the band structure and offer perspectives for the m...
Збережено в:
Дата: | 2017 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
2017
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/156964 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Rashba spin-orbit interaction enhanced by graphene in-plane deformations / B. Berche, F. Mireles, E. Medina // Condensed Matter Physics. — 2017. — Т. 20, № 1. — С. 13702: 1–10 . — Бібліогр.: 35 назв. — англ. |
Репозиторії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Graphene consists in a single-layer carbon crystal where 2pz electrons display a linear dispersion relation in
the vicinity of the Fermi level, conveniently described by a massless Dirac equation in 2+1 spacetime. Spin-orbit
effects open a gap in the band structure and offer perspectives for the manipulation of the conducting electrons
spin. Ways to manipulate spin-orbit couplings in graphene have been generally assessed by proximity effects
to metals that do not compromise the mobility of the unperturbed system and are likely to induce strain in the
graphene layer. In this work we explore the U(1) × SU(2) gauge fields that result from the uniform stretching
of a graphene sheet under a perpendicular electric field. Considering such deformations is particularly relevant
due to the counter-intuitive enhancement of the Rashba coupling between 30-50% for small bond deformations
well known from tight-binding and DFT calculations. We report the accessible changes that can be operated in
the band structure in the vicinity of the K points as a function of the deformation strength and direction. |
---|