Rashba spin-orbit interaction enhanced by graphene in-plane deformations

Graphene consists in a single-layer carbon crystal where 2pz electrons display a linear dispersion relation in the vicinity of the Fermi level, conveniently described by a massless Dirac equation in 2+1 spacetime. Spin-orbit effects open a gap in the band structure and offer perspectives for the m...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Berche, B., Mireles, F., Medina, E.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2017
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/156964
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Rashba spin-orbit interaction enhanced by graphene in-plane deformations / B. Berche, F. Mireles, E. Medina // Condensed Matter Physics. — 2017. — Т. 20, № 1. — С. 13702: 1–10 . — Бібліогр.: 35 назв. — англ.

Репозиторії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Graphene consists in a single-layer carbon crystal where 2pz electrons display a linear dispersion relation in the vicinity of the Fermi level, conveniently described by a massless Dirac equation in 2+1 spacetime. Spin-orbit effects open a gap in the band structure and offer perspectives for the manipulation of the conducting electrons spin. Ways to manipulate spin-orbit couplings in graphene have been generally assessed by proximity effects to metals that do not compromise the mobility of the unperturbed system and are likely to induce strain in the graphene layer. In this work we explore the U(1) × SU(2) gauge fields that result from the uniform stretching of a graphene sheet under a perpendicular electric field. Considering such deformations is particularly relevant due to the counter-intuitive enhancement of the Rashba coupling between 30-50% for small bond deformations well known from tight-binding and DFT calculations. We report the accessible changes that can be operated in the band structure in the vicinity of the K points as a function of the deformation strength and direction.