A simple ansatz for the study of velocity autocorrelation functions in fluids at different timescales
A simple ansatz for the study of velocity autocorrelation functions in fluids at different timescales is proposed. The ansatz is based on an effective summation of the infinite continued fraction at a reasonable assumption about convergence of relaxation times of the higher order memory functions,...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
2018
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/157045 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | A simple ansatz for the study of velocity autocorrelation functions in fluids at different timescales / V.V. Ignatyuk, I.M. Mryglod, T. Bryk // Condensed Matter Physics. — 2018. — Т. 21, № 1. — С. 13001: 1–14. — Бібліогр.: 35 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | A simple ansatz for the study of velocity autocorrelation functions in fluids at different timescales is proposed.
The ansatz is based on an effective summation of the infinite continued fraction at a reasonable assumption
about convergence of relaxation times of the higher order memory functions, which have a purely kinetic origin.
The VAFs obtained within our approach are compared with the results of the Markovian approximation for
memory kernels. It is shown that although in the “overdamped” regime both approaches agree to a large extent
at the initial and intermediate times of the system evolution, our formalism yields power law relaxation of the
VAFs which is not observed at the description with a finite number of the collective modes. Explicit expressions
for the transition times from kinetic to hydrodynamic regimes are obtained from the analysis of the singularities
of spectral functions in the complex frequency plane. |
---|