On the Lie algebra structures connected with Hamiltonian dynamical systems

We construct the hierarchies of master symmetries constituting Virasoro-type algebras for the Hamiltonian vector fields preserving a recursion operator. Similarly, repeatedly contracting a Hamiltonian vector field with the corresponding recursion operator, we define an Abelian Lie algebra of the thu...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:1997
Автор: Smirnov, R.G.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 1997
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/157068
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the Lie algebra structures connected with Hamiltonian dynamical systems / R.G. Smirnov // Український математичний журнал. — 1997. — Т. 49, № 5. — С. 699–705. — Бібліогр.: 9 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We construct the hierarchies of master symmetries constituting Virasoro-type algebras for the Hamiltonian vector fields preserving a recursion operator. Similarly, repeatedly contracting a Hamiltonian vector field with the corresponding recursion operator, we define an Abelian Lie algebra of the thus obtained hierarchy of vector fields. The approach is shown to be applicable for the Volterra and Toda lattices.