2025-02-23T13:28:14-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-157068%22&qt=morelikethis&rows=5
2025-02-23T13:28:14-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-157068%22&qt=morelikethis&rows=5
2025-02-23T13:28:14-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T13:28:14-05:00 DEBUG: Deserialized SOLR response
On the Lie algebra structures connected with Hamiltonian dynamical systems
We construct the hierarchies of master symmetries constituting Virasoro-type algebras for the Hamiltonian vector fields preserving a recursion operator. Similarly, repeatedly contracting a Hamiltonian vector field with the corresponding recursion operator, we define an Abelian Lie algebra of the thu...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
1997
|
Series: | Український математичний журнал |
Subjects: | |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/157068 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
irk-123456789-157068 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1570682019-06-20T01:26:01Z On the Lie algebra structures connected with Hamiltonian dynamical systems Smirnov, R.G. Статті We construct the hierarchies of master symmetries constituting Virasoro-type algebras for the Hamiltonian vector fields preserving a recursion operator. Similarly, repeatedly contracting a Hamiltonian vector field with the corresponding recursion operator, we define an Abelian Lie algebra of the thus obtained hierarchy of vector fields. The approach is shown to be applicable for the Volterra and Toda lattices. Для гамільтоиових систем з рекурсивним оператором ієрархії будується мастер симетрій, які формують алгебри Лі типу Вірасоро. Аналогічно, повторно діючи рекурсивним оператором на гамільтонів потік, одержується ієрархія векторних полів, що складають абелеву алгберу Лі. Цей підхід застосовано до систем Вольтерра і Тода. 1997 Article On the Lie algebra structures connected with Hamiltonian dynamical systems / R.G. Smirnov // Український математичний журнал. — 1997. — Т. 49, № 5. — С. 699–705. — Бібліогр.: 9 назв. — англ. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/157068 517.9 en Український математичний журнал Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Статті Статті |
spellingShingle |
Статті Статті Smirnov, R.G. On the Lie algebra structures connected with Hamiltonian dynamical systems Український математичний журнал |
description |
We construct the hierarchies of master symmetries constituting Virasoro-type algebras for the Hamiltonian vector fields preserving a recursion operator. Similarly, repeatedly contracting a Hamiltonian vector field with the corresponding recursion operator, we define an Abelian Lie algebra of the thus obtained hierarchy of vector fields. The approach is shown to be applicable for the Volterra and Toda lattices. |
format |
Article |
author |
Smirnov, R.G. |
author_facet |
Smirnov, R.G. |
author_sort |
Smirnov, R.G. |
title |
On the Lie algebra structures connected with Hamiltonian dynamical systems |
title_short |
On the Lie algebra structures connected with Hamiltonian dynamical systems |
title_full |
On the Lie algebra structures connected with Hamiltonian dynamical systems |
title_fullStr |
On the Lie algebra structures connected with Hamiltonian dynamical systems |
title_full_unstemmed |
On the Lie algebra structures connected with Hamiltonian dynamical systems |
title_sort |
on the lie algebra structures connected with hamiltonian dynamical systems |
publisher |
Інститут математики НАН України |
publishDate |
1997 |
topic_facet |
Статті |
url |
http://dspace.nbuv.gov.ua/handle/123456789/157068 |
citation_txt |
On the Lie algebra structures connected with Hamiltonian dynamical systems / R.G. Smirnov // Український математичний журнал. — 1997. — Т. 49, № 5. — С. 699–705. — Бібліогр.: 9 назв. — англ. |
series |
Український математичний журнал |
work_keys_str_mv |
AT smirnovrg ontheliealgebrastructuresconnectedwithhamiltoniandynamicalsystems |
first_indexed |
2023-05-20T17:51:18Z |
last_indexed |
2023-05-20T17:51:18Z |
_version_ |
1796154247185694720 |