2025-02-23T13:28:14-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-157068%22&qt=morelikethis&rows=5
2025-02-23T13:28:14-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-157068%22&qt=morelikethis&rows=5
2025-02-23T13:28:14-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T13:28:14-05:00 DEBUG: Deserialized SOLR response

On the Lie algebra structures connected with Hamiltonian dynamical systems

We construct the hierarchies of master symmetries constituting Virasoro-type algebras for the Hamiltonian vector fields preserving a recursion operator. Similarly, repeatedly contracting a Hamiltonian vector field with the corresponding recursion operator, we define an Abelian Lie algebra of the thu...

Full description

Saved in:
Bibliographic Details
Main Author: Smirnov, R.G.
Format: Article
Language:English
Published: Інститут математики НАН України 1997
Series:Український математичний журнал
Subjects:
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/157068
Tags: Add Tag
No Tags, Be the first to tag this record!
id irk-123456789-157068
record_format dspace
spelling irk-123456789-1570682019-06-20T01:26:01Z On the Lie algebra structures connected with Hamiltonian dynamical systems Smirnov, R.G. Статті We construct the hierarchies of master symmetries constituting Virasoro-type algebras for the Hamiltonian vector fields preserving a recursion operator. Similarly, repeatedly contracting a Hamiltonian vector field with the corresponding recursion operator, we define an Abelian Lie algebra of the thus obtained hierarchy of vector fields. The approach is shown to be applicable for the Volterra and Toda lattices. Для гамільтоиових систем з рекурсивним оператором ієрархії будується мастер симетрій, які формують алгебри Лі типу Вірасоро. Аналогічно, повторно діючи рекурсивним оператором на гамільтонів потік, одержується ієрархія векторних полів, що складають абелеву алгберу Лі. Цей підхід застосовано до систем Вольтерра і Тода. 1997 Article On the Lie algebra structures connected with Hamiltonian dynamical systems / R.G. Smirnov // Український математичний журнал. — 1997. — Т. 49, № 5. — С. 699–705. — Бібліогр.: 9 назв. — англ. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/157068 517.9 en Український математичний журнал Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Статті
Статті
spellingShingle Статті
Статті
Smirnov, R.G.
On the Lie algebra structures connected with Hamiltonian dynamical systems
Український математичний журнал
description We construct the hierarchies of master symmetries constituting Virasoro-type algebras for the Hamiltonian vector fields preserving a recursion operator. Similarly, repeatedly contracting a Hamiltonian vector field with the corresponding recursion operator, we define an Abelian Lie algebra of the thus obtained hierarchy of vector fields. The approach is shown to be applicable for the Volterra and Toda lattices.
format Article
author Smirnov, R.G.
author_facet Smirnov, R.G.
author_sort Smirnov, R.G.
title On the Lie algebra structures connected with Hamiltonian dynamical systems
title_short On the Lie algebra structures connected with Hamiltonian dynamical systems
title_full On the Lie algebra structures connected with Hamiltonian dynamical systems
title_fullStr On the Lie algebra structures connected with Hamiltonian dynamical systems
title_full_unstemmed On the Lie algebra structures connected with Hamiltonian dynamical systems
title_sort on the lie algebra structures connected with hamiltonian dynamical systems
publisher Інститут математики НАН України
publishDate 1997
topic_facet Статті
url http://dspace.nbuv.gov.ua/handle/123456789/157068
citation_txt On the Lie algebra structures connected with Hamiltonian dynamical systems / R.G. Smirnov // Український математичний журнал. — 1997. — Т. 49, № 5. — С. 699–705. — Бібліогр.: 9 назв. — англ.
series Український математичний журнал
work_keys_str_mv AT smirnovrg ontheliealgebrastructuresconnectedwithhamiltoniandynamicalsystems
first_indexed 2023-05-20T17:51:18Z
last_indexed 2023-05-20T17:51:18Z
_version_ 1796154247185694720