Geometric measure of mixing of quantum state

We define the geometric measure of mixing of quantum state as a minimal Hilbert-Schmidt distance between the mixed state and a set of pure states. An explicit expression for the geometric measure is obtained. It is interesting that this expression corresponds to the squared Euclidian distance betw...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Laba, H.P., Tkachuk, V.M.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2018
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/157111
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Geometric measure of mixing of quantum state / H.P. Laba, V.M. Tkachuk // Condensed Matter Physics. — 2018. — Т. 21, № 3. — С. 33003: 1–4. — Бібліогр.: 7 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We define the geometric measure of mixing of quantum state as a minimal Hilbert-Schmidt distance between the mixed state and a set of pure states. An explicit expression for the geometric measure is obtained. It is interesting that this expression corresponds to the squared Euclidian distance between the mixed state and the pure one in space of eigenvalues of the density matrix. As an example, geometric measure of mixing for spin-1/2 states is calculated.