Geometric measure of mixing of quantum state

We define the geometric measure of mixing of quantum state as a minimal Hilbert-Schmidt distance between the mixed state and a set of pure states. An explicit expression for the geometric measure is obtained. It is interesting that this expression corresponds to the squared Euclidian distance betw...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Laba, H.P., Tkachuk, V.M.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2018
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/157111
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Geometric measure of mixing of quantum state / H.P. Laba, V.M. Tkachuk // Condensed Matter Physics. — 2018. — Т. 21, № 3. — С. 33003: 1–4. — Бібліогр.: 7 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-157111
record_format dspace
spelling irk-123456789-1571112019-06-20T01:25:46Z Geometric measure of mixing of quantum state Laba, H.P. Tkachuk, V.M. We define the geometric measure of mixing of quantum state as a minimal Hilbert-Schmidt distance between the mixed state and a set of pure states. An explicit expression for the geometric measure is obtained. It is interesting that this expression corresponds to the squared Euclidian distance between the mixed state and the pure one in space of eigenvalues of the density matrix. As an example, geometric measure of mixing for spin-1/2 states is calculated. Ми означаємо геометричну мiру змiшаностi квантоваго стану як мiнiмальну вiдстань Гiльберта-Шмiдта мiж змiшаним станом та набором чистих станiв. Отримано явний вираз для геометричної мiри змiшаностi. Цiкавим є те, що цей вираз вiдповiдає квадрату евклiдової вiдстанi мiж змiшаним та чистим станами у просторi власних значень матрицi густини. Як приклад, обчислено геометричну мiру змiшаностi станiв спiна 1/2. 2018 Article Geometric measure of mixing of quantum state / H.P. Laba, V.M. Tkachuk // Condensed Matter Physics. — 2018. — Т. 21, № 3. — С. 33003: 1–4. — Бібліогр.: 7 назв. — англ. 1607-324X PACS: 03.65.-w, 03.67.-a DOI:10.5488/CMP.21.33003 arXiv:1809.09469 http://dspace.nbuv.gov.ua/handle/123456789/157111 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We define the geometric measure of mixing of quantum state as a minimal Hilbert-Schmidt distance between the mixed state and a set of pure states. An explicit expression for the geometric measure is obtained. It is interesting that this expression corresponds to the squared Euclidian distance between the mixed state and the pure one in space of eigenvalues of the density matrix. As an example, geometric measure of mixing for spin-1/2 states is calculated.
format Article
author Laba, H.P.
Tkachuk, V.M.
spellingShingle Laba, H.P.
Tkachuk, V.M.
Geometric measure of mixing of quantum state
Condensed Matter Physics
author_facet Laba, H.P.
Tkachuk, V.M.
author_sort Laba, H.P.
title Geometric measure of mixing of quantum state
title_short Geometric measure of mixing of quantum state
title_full Geometric measure of mixing of quantum state
title_fullStr Geometric measure of mixing of quantum state
title_full_unstemmed Geometric measure of mixing of quantum state
title_sort geometric measure of mixing of quantum state
publisher Інститут фізики конденсованих систем НАН України
publishDate 2018
url http://dspace.nbuv.gov.ua/handle/123456789/157111
citation_txt Geometric measure of mixing of quantum state / H.P. Laba, V.M. Tkachuk // Condensed Matter Physics. — 2018. — Т. 21, № 3. — С. 33003: 1–4. — Бібліогр.: 7 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT labahp geometricmeasureofmixingofquantumstate
AT tkachukvm geometricmeasureofmixingofquantumstate
first_indexed 2023-05-20T17:51:35Z
last_indexed 2023-05-20T17:51:35Z
_version_ 1796154262442475520