Energy spectrum of localized quasiparticles renormalized by multi-phonon processes at finite temperature

The theory of renormalized energy spectrum of localized quasi-particle interacting with polarization phonons at finite temperature is developed within the Feynman-Pines diagram technique. The created computer program effectively takes into account multi-phonon processes, exactly defining all diagr...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Tkach, M.V., Pytiuk, O.Yu., Voitsekhivska, O.M., Seti, Ju.O.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2017
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/157114
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Energy spectrum of localized quasiparticles renormalized by multi-phonon processes at finite temperature / M.V. Tkach, O.Yu. Pytiuk, O.M. Voitsekhivska, Ju.O. Seti // Condensed Matter Physics. — 2017. — Т. 20, № 4. — С. 43706: 1–16. — Бібліогр.: 23 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-157114
record_format dspace
spelling irk-123456789-1571142019-06-20T01:28:30Z Energy spectrum of localized quasiparticles renormalized by multi-phonon processes at finite temperature Tkach, M.V. Pytiuk, O.Yu. Voitsekhivska, O.M. Seti, Ju.O. The theory of renormalized energy spectrum of localized quasi-particle interacting with polarization phonons at finite temperature is developed within the Feynman-Pines diagram technique. The created computer program effectively takes into account multi-phonon processes, exactly defining all diagrams of mass operator together with their analytical expressions in arbitrary order over the coupling constant. Now it is possible to separate the pole and non-pole mass operator terms and perform a partial summing of their main terms. The renormalized spectrum of the system is obtained within the solution of dispersion equation in the vicinity of the main state where the high- and low-energy complexes of bound states are observed. The properties of the spectrum are analyzed depending on the coupling constant and the temperature. На основi дiаграмної технiки Феймана-Пайнса запропонована теорiя перенормування енергетичного спектру локалiзованої квазiчастинки, яка взаємодiє з поляризацiйними фононами при скiнченнiй температурi. Розроблена комп’ютерна програма, яка ефективно враховує багатофононнi процеси, точно визначаючи усi дiаграми масового оператора i їх аналiтичнi вирази у довiльному порядку за константою зв’язку. Це дозволило розмежувати неполюснi й полюснi доданки масового оператора та виконати парцiальне пiдсумовування їх головних складових. Розв’язанням дисперсiйного рiвняння отримано перенормований спектр системи в околi основного стану, де спостерiгаються високо- та низькоенергетичнi комплекси зв’язаних станiв. Проаналiзовано властивостi спектру в залежностi вiд константи зв’язку й температури. 2017 Article Energy spectrum of localized quasiparticles renormalized by multi-phonon processes at finite temperature / M.V. Tkach, O.Yu. Pytiuk, O.M. Voitsekhivska, Ju.O. Seti // Condensed Matter Physics. — 2017. — Т. 20, № 4. — С. 43706: 1–16. — Бібліогр.: 23 назв. — англ. 1607-324X PACS: 71.38.-k, 63.20.kd, 63.20.dk, 72.10.Di DOI:10.5488/CMP.20.43706 arXiv:1712.05367 http://dspace.nbuv.gov.ua/handle/123456789/157114 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The theory of renormalized energy spectrum of localized quasi-particle interacting with polarization phonons at finite temperature is developed within the Feynman-Pines diagram technique. The created computer program effectively takes into account multi-phonon processes, exactly defining all diagrams of mass operator together with their analytical expressions in arbitrary order over the coupling constant. Now it is possible to separate the pole and non-pole mass operator terms and perform a partial summing of their main terms. The renormalized spectrum of the system is obtained within the solution of dispersion equation in the vicinity of the main state where the high- and low-energy complexes of bound states are observed. The properties of the spectrum are analyzed depending on the coupling constant and the temperature.
format Article
author Tkach, M.V.
Pytiuk, O.Yu.
Voitsekhivska, O.M.
Seti, Ju.O.
spellingShingle Tkach, M.V.
Pytiuk, O.Yu.
Voitsekhivska, O.M.
Seti, Ju.O.
Energy spectrum of localized quasiparticles renormalized by multi-phonon processes at finite temperature
Condensed Matter Physics
author_facet Tkach, M.V.
Pytiuk, O.Yu.
Voitsekhivska, O.M.
Seti, Ju.O.
author_sort Tkach, M.V.
title Energy spectrum of localized quasiparticles renormalized by multi-phonon processes at finite temperature
title_short Energy spectrum of localized quasiparticles renormalized by multi-phonon processes at finite temperature
title_full Energy spectrum of localized quasiparticles renormalized by multi-phonon processes at finite temperature
title_fullStr Energy spectrum of localized quasiparticles renormalized by multi-phonon processes at finite temperature
title_full_unstemmed Energy spectrum of localized quasiparticles renormalized by multi-phonon processes at finite temperature
title_sort energy spectrum of localized quasiparticles renormalized by multi-phonon processes at finite temperature
publisher Інститут фізики конденсованих систем НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/157114
citation_txt Energy spectrum of localized quasiparticles renormalized by multi-phonon processes at finite temperature / M.V. Tkach, O.Yu. Pytiuk, O.M. Voitsekhivska, Ju.O. Seti // Condensed Matter Physics. — 2017. — Т. 20, № 4. — С. 43706: 1–16. — Бібліогр.: 23 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT tkachmv energyspectrumoflocalizedquasiparticlesrenormalizedbymultiphononprocessesatfinitetemperature
AT pytiukoyu energyspectrumoflocalizedquasiparticlesrenormalizedbymultiphononprocessesatfinitetemperature
AT voitsekhivskaom energyspectrumoflocalizedquasiparticlesrenormalizedbymultiphononprocessesatfinitetemperature
AT setijuo energyspectrumoflocalizedquasiparticlesrenormalizedbymultiphononprocessesatfinitetemperature
first_indexed 2023-05-20T17:51:18Z
last_indexed 2023-05-20T17:51:18Z
_version_ 1796154247504461824