A machine learning approach to the Berezinskii-Kosterlitz-Thouless transition in classical and quantum models
The Berezinskii-Kosterlitz-Thouless transition is a very specific phase transition where all thermodynamic quantities are smooth. Therefore, it is difficult to determine the critical temperature in a precise way. In this paper we demonstrate how neural networks can be used to perform this task. In...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
2018
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/157119 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | A machine learning approach to the Berezinskii-Kosterlitz-Thouless transition in classical and quantum models / M. Richter-Laskowska, H. Khan, N. Trivedi, M.M. Maśka // Condensed Matter Physics. — 2018. — Т. 21, № 3. — С. 33602: 1–11. — Бібліогр.: 32 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-157119 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1571192019-06-20T01:30:23Z A machine learning approach to the Berezinskii-Kosterlitz-Thouless transition in classical and quantum models Richter-Laskowska, M. Khan, H. Trivedi, N. Maśka, M.M. The Berezinskii-Kosterlitz-Thouless transition is a very specific phase transition where all thermodynamic quantities are smooth. Therefore, it is difficult to determine the critical temperature in a precise way. In this paper we demonstrate how neural networks can be used to perform this task. In particular, we study how the accuracy of the transition identification depends on the way the neural networks are trained. We apply our approach to three different systems: (i) the classical XY model, (ii) the phase-fermion model, where classical and quantum degrees of freedom are coupled and (iii) the quantum XY model. Перехiд Березинського-Костерлiца-Таулесса є дуже специфiчним фазовим переходом, при якому всi термодинамiчнi величини є неперервними. Тому важко точно визначити критичну температуру. У цiй статтi нами показано, як можна використати нейроннi мережi для розв’язання цього завдання. Зокрема, дослiджено, до якої мiри точнiсть розпiзнавання переходу залежить вiд способу навчання нейронних мереж. Ми застосовуємо наш пiдхiд до трьох рiзних систем: (i) класична XY модель, (ii) фазово-фермiонна модель iз взаємодiєю мiж класичними й квантовими ступенями вiльностi та (iii) квантова XY модель. 2018 Article A machine learning approach to the Berezinskii-Kosterlitz-Thouless transition in classical and quantum models / M. Richter-Laskowska, H. Khan, N. Trivedi, M.M. Maśka // Condensed Matter Physics. — 2018. — Т. 21, № 3. — С. 33602: 1–11. — Бібліогр.: 32 назв. — англ. 1607-324X PACS: 64.60.-i, 05.70.Fh, 07.05.Mh DOI:10.5488/CMP.21.33602 arXiv:1809.09927 http://dspace.nbuv.gov.ua/handle/123456789/157119 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The Berezinskii-Kosterlitz-Thouless transition is a very specific phase transition where all thermodynamic quantities are smooth. Therefore, it is difficult to determine the critical temperature in a precise way. In this paper we
demonstrate how neural networks can be used to perform this task. In particular, we study how the accuracy
of the transition identification depends on the way the neural networks are trained. We apply our approach to
three different systems: (i) the classical XY model, (ii) the phase-fermion model, where classical and quantum
degrees of freedom are coupled and (iii) the quantum XY model. |
format |
Article |
author |
Richter-Laskowska, M. Khan, H. Trivedi, N. Maśka, M.M. |
spellingShingle |
Richter-Laskowska, M. Khan, H. Trivedi, N. Maśka, M.M. A machine learning approach to the Berezinskii-Kosterlitz-Thouless transition in classical and quantum models Condensed Matter Physics |
author_facet |
Richter-Laskowska, M. Khan, H. Trivedi, N. Maśka, M.M. |
author_sort |
Richter-Laskowska, M. |
title |
A machine learning approach to the Berezinskii-Kosterlitz-Thouless transition in classical and quantum models |
title_short |
A machine learning approach to the Berezinskii-Kosterlitz-Thouless transition in classical and quantum models |
title_full |
A machine learning approach to the Berezinskii-Kosterlitz-Thouless transition in classical and quantum models |
title_fullStr |
A machine learning approach to the Berezinskii-Kosterlitz-Thouless transition in classical and quantum models |
title_full_unstemmed |
A machine learning approach to the Berezinskii-Kosterlitz-Thouless transition in classical and quantum models |
title_sort |
machine learning approach to the berezinskii-kosterlitz-thouless transition in classical and quantum models |
publisher |
Інститут фізики конденсованих систем НАН України |
publishDate |
2018 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/157119 |
citation_txt |
A machine learning approach to the Berezinskii-Kosterlitz-Thouless transition in classical and quantum models / M. Richter-Laskowska, H. Khan, N. Trivedi, M.M. Maśka // Condensed Matter Physics. — 2018. — Т. 21, № 3. — С. 33602: 1–11. — Бібліогр.: 32 назв. — англ. |
series |
Condensed Matter Physics |
work_keys_str_mv |
AT richterlaskowskam amachinelearningapproachtotheberezinskiikosterlitzthoulesstransitioninclassicalandquantummodels AT khanh amachinelearningapproachtotheberezinskiikosterlitzthoulesstransitioninclassicalandquantummodels AT trivedin amachinelearningapproachtotheberezinskiikosterlitzthoulesstransitioninclassicalandquantummodels AT maskamm amachinelearningapproachtotheberezinskiikosterlitzthoulesstransitioninclassicalandquantummodels AT richterlaskowskam machinelearningapproachtotheberezinskiikosterlitzthoulesstransitioninclassicalandquantummodels AT khanh machinelearningapproachtotheberezinskiikosterlitzthoulesstransitioninclassicalandquantummodels AT trivedin machinelearningapproachtotheberezinskiikosterlitzthoulesstransitioninclassicalandquantummodels AT maskamm machinelearningapproachtotheberezinskiikosterlitzthoulesstransitioninclassicalandquantummodels |
first_indexed |
2023-05-20T17:51:36Z |
last_indexed |
2023-05-20T17:51:36Z |
_version_ |
1796154262866100224 |