On square-Hamiltonian graphs
A finite connected graph G is called squareHamiltonian if G² is Hamiltonian. We prove that any join of the family of Hamiltonian graphs by tree is square-Hamiltonian. Applying this statement we show that the line graph and any round-about reconstruction of an arbitrary finite connected graph is...
Збережено в:
Дата: | 2005 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2005
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/157198 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On square-Hamiltonian graphs / K.D. Protasova // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 3. — С. 56–59. — Бібліогр.: 7 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-157198 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1571982019-06-20T01:29:38Z On square-Hamiltonian graphs Protasova, K.D. A finite connected graph G is called squareHamiltonian if G² is Hamiltonian. We prove that any join of the family of Hamiltonian graphs by tree is square-Hamiltonian. Applying this statement we show that the line graph and any round-about reconstruction of an arbitrary finite connected graph is square-Hamiltonian. 2005 Article On square-Hamiltonian graphs / K.D. Protasova // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 3. — С. 56–59. — Бібліогр.: 7 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 05C45. http://dspace.nbuv.gov.ua/handle/123456789/157198 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
A finite connected graph G is called squareHamiltonian if G²
is Hamiltonian. We prove that any join of
the family of Hamiltonian graphs by tree is square-Hamiltonian.
Applying this statement we show that the line graph and any
round-about reconstruction of an arbitrary finite connected graph
is square-Hamiltonian. |
format |
Article |
author |
Protasova, K.D. |
spellingShingle |
Protasova, K.D. On square-Hamiltonian graphs Algebra and Discrete Mathematics |
author_facet |
Protasova, K.D. |
author_sort |
Protasova, K.D. |
title |
On square-Hamiltonian graphs |
title_short |
On square-Hamiltonian graphs |
title_full |
On square-Hamiltonian graphs |
title_fullStr |
On square-Hamiltonian graphs |
title_full_unstemmed |
On square-Hamiltonian graphs |
title_sort |
on square-hamiltonian graphs |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2005 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/157198 |
citation_txt |
On square-Hamiltonian graphs / K.D. Protasova // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 3. — С. 56–59. — Бібліогр.: 7 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT protasovakd onsquarehamiltoniangraphs |
first_indexed |
2023-05-20T17:51:41Z |
last_indexed |
2023-05-20T17:51:41Z |
_version_ |
1796154258424332288 |