Псевдодифференциальные уравнения и оператор обобщенного сдвига в негауссовом бесконечномерном анализе
Вивчаються псевдодифереціиальні рівняния вигляду v(Dχ)y=f (де v — голоморфна у нулі функція. Dχ — псевдодиференціальний оператор) на просторах оснонних функцій негауссівського нескінченновимірного аналізу. Отримані результати застосовуються для побудови оператора узагальненого зсуву Tχy=χ(⟨y,Dχ⟩) на...
Збережено в:
Дата: | 1999 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут математики НАН України
1999
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/157234 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Псевдодифференциальные уравнения и оператор обобщенного сдвига в негауссовом бесконечномерном анализе / Н.А. Качановский // Український математичний журнал. — 1999. — Т. 51, № 10. — С. 1334–1341. — Бібліогр.: 13 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-157234 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1572342019-06-20T01:30:37Z Псевдодифференциальные уравнения и оператор обобщенного сдвига в негауссовом бесконечномерном анализе Качановский, Н.А. Статті Вивчаються псевдодифереціиальні рівняния вигляду v(Dχ)y=f (де v — голоморфна у нулі функція. Dχ — псевдодиференціальний оператор) на просторах оснонних функцій негауссівського нескінченновимірного аналізу. Отримані результати застосовуються для побудови оператора узагальненого зсуву Tχy=χ(⟨y,Dχ⟩) на вказаних просторах та вивчення його властивостей. Зокрема, доведено асоціативність, комутативність та інші властивості Tχy, що є диалогами класичиих власчивостей оператора узагальненого зсуву. Pseudodifferential equations of the form v(Dχ)y=f (where v is a function holomorphic at zero and Dχ is a pseudodifferential operator) are studied on spaces of test functions of non-Gaussian infinite-dimensional analysis. The results obtained are applied to construct a generalized translation operator Tχy=χ(⟨y,Dχ⟩) the already mentioned spaces and to study its properties. In particular, the associativity, the commutativity, and another properties of Tχy which are analogs of the classical properties of a generalized translation operator. 1999 Article Псевдодифференциальные уравнения и оператор обобщенного сдвига в негауссовом бесконечномерном анализе / Н.А. Качановский // Український математичний журнал. — 1999. — Т. 51, № 10. — С. 1334–1341. — Бібліогр.: 13 назв. — рос. http://dspace.nbuv.gov.ua/handle/123456789/157234 517.9 ru Український математичний журнал Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
Russian |
topic |
Статті Статті |
spellingShingle |
Статті Статті Качановский, Н.А. Псевдодифференциальные уравнения и оператор обобщенного сдвига в негауссовом бесконечномерном анализе Український математичний журнал |
description |
Вивчаються псевдодифереціиальні рівняния вигляду v(Dχ)y=f (де v — голоморфна у нулі функція. Dχ — псевдодиференціальний оператор) на просторах оснонних функцій негауссівського нескінченновимірного аналізу. Отримані результати застосовуються для побудови оператора узагальненого зсуву Tχy=χ(⟨y,Dχ⟩) на вказаних просторах та вивчення його властивостей. Зокрема, доведено асоціативність, комутативність та інші властивості Tχy, що є диалогами класичиих власчивостей оператора узагальненого зсуву. |
format |
Article |
author |
Качановский, Н.А. |
author_facet |
Качановский, Н.А. |
author_sort |
Качановский, Н.А. |
title |
Псевдодифференциальные уравнения и оператор обобщенного сдвига в негауссовом бесконечномерном анализе |
title_short |
Псевдодифференциальные уравнения и оператор обобщенного сдвига в негауссовом бесконечномерном анализе |
title_full |
Псевдодифференциальные уравнения и оператор обобщенного сдвига в негауссовом бесконечномерном анализе |
title_fullStr |
Псевдодифференциальные уравнения и оператор обобщенного сдвига в негауссовом бесконечномерном анализе |
title_full_unstemmed |
Псевдодифференциальные уравнения и оператор обобщенного сдвига в негауссовом бесконечномерном анализе |
title_sort |
псевдодифференциальные уравнения и оператор обобщенного сдвига в негауссовом бесконечномерном анализе |
publisher |
Інститут математики НАН України |
publishDate |
1999 |
topic_facet |
Статті |
url |
http://dspace.nbuv.gov.ua/handle/123456789/157234 |
citation_txt |
Псевдодифференциальные уравнения и оператор обобщенного сдвига в негауссовом бесконечномерном анализе / Н.А. Качановский // Український математичний журнал. — 1999. — Т. 51, № 10. — С. 1334–1341. — Бібліогр.: 13 назв. — рос. |
series |
Український математичний журнал |
work_keys_str_mv |
AT kačanovskijna psevdodifferencialʹnyeuravneniâioperatorobobŝennogosdvigavnegaussovombeskonečnomernomanalize |
first_indexed |
2025-07-14T09:37:35Z |
last_indexed |
2025-07-14T09:37:35Z |
_version_ |
1837614609229414400 |
fulltext |
Ys 517.9
[-I. A. KaqaliOBCKHi~i (Hn-r ~a'reMa'nmrl HAH ynpamn,1. KHeB)
I I C E B ~ O ~ H c D ~ E P E H I . [ H A J ' I B H B I E Y P A B H E H H ~ I
H OnEPATOP OBOBUIEHHOFO C,~BHI"A
B HEFAYCCOBOM BECKOHEqHOMEPHOM AHA,FIH3E
Pseudodifferential equations of the form v (Dx)y = f (where v is a function holomorphic at zero and
D z is a pscudodifferential operator) are studied on spaces of test functions of non-Gaussian infinite-
dimensional anatys!s. The results obtained are applied to construct a generalized translation operator
~.Z = X((Y, Dz) ) , on the already mentioned spaces and to study its properties. In particular, the
associativity, the commutativity, and another properties of ~z. are proved which are analogs of the
classical properties of generalized translation operator.
Bru)qalor))ca ncen/toitHcl~pemtia~n,ui pilm~nHa Bm'Jlalty v (Dx)y = f (Ire v ~ voJloMopqbtmy ny~fi
~yHK~dX. D x ~ nceBltOlB4~epelll[i~n,ll)lfl onepa'rop) ,~a npocTopax ocuommx tl.~ynKRii, i nevaycci~-
CbKOI'O lleCKil~qelutOBI4MipnoFo allaJtiay. O'cp~Malfi peay.ql;rar~.l aa~:[oco~ym-n,ca ltJ~a no6yJtom~ one-
pa'ropa y3al'tUll,llenovo 3cyl~y ~z := Z((Y. Dz)) Ixa BKa~nnx npocnopax ra mmqemm floro BJmCrU-
BOC'I~[.|" 3OKpeMa, ]tOBe]tellO acoltia'rHBlliCTb, KOM~rI'aTltBII[CTI, Ta illttli HJIa~l'llBOr Tv X , l ifo ~ alla~lo-
I'aMH KJlaCI.IqlIHX BJla~'l'nBOCrFefl o i l epa ropa y3alaJn)l lelIol 'o 3cyBy,
B HaCTO~tRee ~pe~m HeFayCCOBCKH~i 6ecKo~te'aHoMepl-~b~I aHa.n)~3 aKTHBHO paapa6a-
TtaBaerca a o6o6maeTca MHOrm, m aBTOpaMH (C~., HaHptx~tep, [ 1 - 11]). Han6o~lee
tnnpoKHe o6o6merma, rxo.ny,~eHnbte B pa6oTax IO. M. Bepe3aHcKoro H IO. F. KOH-
~pav~,ena [2, 6], tO. M. Bepe3aHcKoro [7, 10], ocuo~am,i Ha aaMeHe ~KCnOHeHT~,~ t~
nponaBO~a~uef,~[ c~yHKttrm nO~HItOMOB DpMnTa rteKoTOpOi.i tte~ofl t~yHKUHe~L a O6b~'a-
HOrO c~mwa ~ o6o6meHm,tM. B pa6o're [12] petuaeTcz o6paTHaa 3a/aa'aa: no r~Be-
CTtmtra xapa~Tepa~ Anneaz n.nn/Ie.n~capTa (aHazoraM nozmto~qo~ Dp~,mTa, cM. [2,
6, 7, 10, 12]) BOCCTaHa~mmaeTca onepaTop o6o6memtoro C,aBHra. l'lo/IO6H~te no-
CTpOeHH~I MO~7.HO npOBCCTH 1~ n c.~lyqae, Kor/~a BMeCTO rlOJIIIHO}4OB DpMr~Ta rtcno.nb-
3ylOTC~ o6o6meamae KBa3Hanrte.neab~ no.nHilo~a c npoH3BO11~ttle~"t tl3yHKRHefi
y ( 0 ) Z ( ( x , a ( 0 ) ) ) [8], rae ~ : C ---> C ~ u e ~ a . a c[~ynKuHa, y n a - - ro:mMopdp-
Hble B HyJle clJyHKRHI, I Ha KOMII.neKcrlcl)tlKaRI-IH N C IteKo'roporo BeRIeCTBeHHOFO
aaepHorO npocTpaHCTBa N. HMettHO, onepaTop o6o6taeHHoro c~aHra ~ ~TO onepa-
Top Tv ~ = Z((Y, DX)), rite D z ~ nceB~aOZmC~cloepeHunaat, tmfl.i onepaTop. CB.,qaaH-
Huff c ynOMaHyTOfl BmtUe qbynKtlnefl Z" TaKnM o6paaolvl. 6a3o|| /~.n,q nOCTpOeHH.a
O606tReHHOFO C/~BHra JtBJI.,qIOTC~I nceBaol~Hqb~epeHuHa~bm,te ypaBHeHrIZ BH,aa
v ( D x ) y = f , r~te v ~ ronoMopqbt!aa B 0 ~ N c t~yHKLIII~I. C~rMeTr~M, qTO TaKne
ypaBHeHH~l Hayqa~HCl, (6e3OTHOClITeJ'IblIO K 0606tReltHoMy C/~Brtry) B O/IHoMepHo~I
cny~ae B [13] (no nOBOdy 6eCKOHeqHOMepllblX O606tl.l.eltH~ CM. [8, 9, I 1] ).
L[e.nl:,lO HaCTOIItRe[.| CTaTbI.I J, IB.n~IeTCJt tl3yqerlHe llCCB/IO/~llqJtl.)epeHtlHaJlbHblX
ypaBHeHafi Brl/.la v(Dx)Y = f ~ a tl3yHKtmt.~ 6eCKoHe~Horo KOJIHqeCTBa nepe~,teH-
Hb~X, a TaKZ, Ke I1OCTpOeHHe H H3ytleHrIe c HOMOILIblO yKa3aHHb[X ypamtenrfla onepaTopa
o6o6meHHoro CaBara ~,Z Ha npocTpaHCTBaX OCHOBm,~X qbytmmtx~ Heraycco~c~oro
6eCKOae'-IHOMepHoro arlanrlaa. (Ylpn :~TOM dpyHKRrla Z ( ( x , 0~ (O))) $1BJlfleTC.,q xa-
paKTepoM/I.na ~TOrO CZBnra: ~,Z X((X ' 0~(0))) = X ((X, a ( 0 ) ) ) X ( ( Y , a ( 0 ) ) ) . ) B
qaCTHOC'rH,/~OKa3alto, qTO BBr162 orIepaTop ~,~ riMeeT aCCORtlaTHBHOC'I-b, KOM-
~tyTaTHBHOCT~ H/xpyrt4c K.rlaccHqCCKI, IC CBO[~[CTBa O606mCHHOrO c~Bt4ra. Pc3y.rlr~TaTrd
CTaT~,a raoa~no ycnonHo paz~e.nwn, Ha ane ,~acTr~. Flepaaa npez~cTa~naeT co6ofi
o6o6memte Ha 6ecxoHeaHor, tepmafl c.ny,~afi COOT~eTCT~yIomax peay.m-TaTon [13 ] B
6onee o6trae~, '~eM n [8, 9, 11 ], nocTm.ionme. Bo mTOpO~t moHxpeTrmnpo~ama ncc:~e-
�9 H. A. KAqAHOBCKH~. 1~)9
1334 ISSN 0041-6053. Yh'l). ,~tam. ~."vpu,, ] 999. m. 51, N e I0
FICEB~O}2HOOEPEHIAHAYlbHbIE YPABHEHH~I H OHEPATOP ... 1335
]~OBaHrl~l [ 12] B cnyqae atla~Haa Ha FIp0cTpaHCTBaX, rIopo.X<~eHl-I~X 0606meHHI:,IMH
KBaarlannencBIaMr! noanHOMaMH,'a I-Ie a6cTpaKTlltaMrl xapaKTcpaMrl Arlrle.rln H.nrI
~e.nbcapTa, T. e. B xaqecTBe xapaKTepa Z (x ; O ) ~l~wypHpyeT Z ( (X, a (e) > ). OTM e-
TI, IM, O/IHaKO, qTO IIpe/~C'I'aBJ~eHHbIe 3~ecs pe3yJqbTaTbl He J~mJIJllOTC~q qaCTI-IbIM C.nyqa-
era [12], llOCKO..qbKy IIOCTpOeHHSIit orlepaTop ~,X OTairlqaeTc~l OT o6o6menHoro
C~Bnra B [12] (~e~CTByeT na ~pyrHx npocTpaHCTBaX), a nponaBo~amaz dpyHKmla
06o6taennr~x KBa3rxanneneaux no.nrxrxoMoB He aB.n-aeTca aacTmaM c.ayqaeM npoHaao-
aame~ dpyHKmta xapaKTepoB An ne~a Hml ~enbcapTa (B qaCTHOCTI4, na-aa Hamtqrla
napaMeTpa a ) . B t~ezora, CTaTba npo~oz~aeT ricc~eaoBamla aaTopa, ony6~qnKoBan-
nsae B [8].
1. FlycTs . q ( ~ Be~ecTBeHHoe cenapa6ezbnoe rn~L6epToBo npo .cTpancTao, N
cenapa6ezbnoe a~epHoe npocTpaHCTBO ~peme, nzoTuo n HenpeptaBnO B~o~enHoe B
.q(, N ' ~ npocTpaacr~o, conpa~KenHoe K N 0TU0CnTeZSHO 2/'. Tor~a (a cn~y
aaepHOCTH) N = prlimY-/'p, N ' = ind l imH_p , roe M'p, p ~ Z , ~ i i e ~ o r o p u e
pen p~l~l
r~t~ab6epTOBb~ npocTpancTaa (XOTOph~e raO~HO a~x6paT~, paayMeeTca, He e/amCTBeH-
roam o6paaora; rata 6yz~era CqriTaTb, qTO TaKo[~ Bu6op c~e:mn ri aadpriKctlpoBaH),
He+ 1 B:~oa<eno B Y'~ onepaTopora Tuna Frmb6epTa--IIIraHZtTa ~ ra~I~oro p a Z,
.q-[_p --HeraTrmtlue npocTpaHcTaa tterto'-ieK H i , ~ .,a/'~ .q.{p. 0603Ha'-Irlra qepea 1. Ip
nopray B ..q-{~, ~epe3 ( - , , > ~ cnaprmam~e raez<ay ~.qeraenTa~H N' r~ N, 5/'_,0 n Mp,
3a]IaBaeraoe pactmipeHnera cxanapHoro rtpor~aBe/ICHHa B .q-/', rt coxpaHnM aTn 060-
3HaqeHH.a/I..r!..a TeH3opHbIX cTeneHefi rlpoc'rpanc'rB H KOrannexcnqbnKai.1;H~.
I'IycT~ N c ~ xoranneKcm~Hxam~z N. 0603na'aHM ,aepea Hol 0 (No) a,nre6py
pOCTKOB ro.noraopqbm,~x B HyneqbyH~tmfl "/: N c --'-'~C, ,aepe3 Holo(N c , N c ) ' - a.n-
re6py pOC'rXOB ro.~OMOpqbH~X B Hyne ~yHKttnia a : N c ----> N c .
~ Z,.~, u n, u e C - - Lie.nan qbyHKUtl.,'t TaKaa, qTO Z (0) = 1, 1-lycT~ Z(u) = =0 n!
Zn~:0 Vn E Z+. PaccraoTpHra tl~ym<tlmo 7(0)X(<Z, a ( 0 ) ) ) , 0 E N c , z E N c ,
rae 7E Holo(Nc) , "},(0) :~ 0; a �9 Hol 0 ( N c , N c ) o~(0) = 0 rt o6paTrwia. Pac-
K.naabmaa ee B a p~t~t Te~'t.nopa no 0, c noraombxo Teoperata o a~pe no.nyqaera c.ne-
,a3qotuee npez~cTaB,nem~e:
r/Ie @ o603naqaeT cmvtraeTpr~qecKoe TeHaopnoe npor~3Be~teHne.
Onpeae.aeHne 1. Ha3o~e~t cucme.atoa (6ecrone,.mo.~tepm, fx) o6o6ucenn~" Kea-
^
3uanneneeb~x nO.aUnOZtOe pV.a := {(p,V.a, q~(,,)>: 9(,,) e N~n, n e Z + } .
1-IycT~ s ~ raHomecTso scex HenpeptaBn~tx I~0mmoraon na N'. /Xsm p, q
e Z+ r~ 13 r [0, 1 ] onpet~eaa~ npocTpancTao ocnosmax qbyHxuH~t (M'p)~q.v. a ~ax
3aMs~xarme ~ (N ' ) no C0OTBeTCTBytomei~t noprae:
Ilq~ll2P:q'l~"t'= := n=0 ~ (n!lt+l~zq" <
FIo~o~HM
ISSN 0041-6053. Yrp. ~tam. ~.'vpu., 1999, m. 51, N ~ 10
1336 H.A. KAt-IAHOBCKHI~t
(N)~, a := prlim(Y'/z,)q~,?,..
p, qcN
Cno~ic'ma cac ' re~u rto.rmao~oa pu n npocTpaac'rs (.q-/'t,){.~,ct , (N)~,c t n p a
= 1 uayqeHta B [8].
3a~e~anue 1. J:lapa Pn v'a , KaK aBeReHrtue rlpOCTpaHCTBa 14 HopMa
U" IIp.q,l~>t,a, aa~ncrr , ~o .equo , OT (I~yHKIIHH ~,. Oaaa~o Mu He 6y~eM non~tepKa-
Barb ~ 3aBrlCrlMOCTb COOTBeTCTBylOmI4M I41-IaeKCOI~I a,rl~q yrlpomeHn~l O6OaHaqeHHlt.
2. 1-lyca~ V ~ H o l o ( N c ) . Onpeae~ma Ha Z ( N ' ) nceaaoa r tdp~epemma~n~ta
orlepaTop v(Dx) := ~]~'=0 ~, <vn'D~ n)' rz~e v n , N'c ~n .z paa~o~erma
V(0) : Z n : 0 l~-l<Vn'O| n o ~ a r a a H a . o n o M a x
I $ ' .
m!Zm_n (x| ~ v n , f~(m)>, (Vn, D~n>(x| (m)) : = l{m?.n} (m_n) !z m
'̂r ~,,, N ' , (p(m)~ " C , x
rx npoz~o.amaz no IIHHeI:tHOCTH (3/~eCb I {m>n} ~ rm/~rlKaTop {m > n }) .
J'le~Ma I. Onepamop V (D z) ~tOa~HO npoSon~um~ Oo ~une~noeo nenpep~tenoeo
onepamopa, Oe~cm~ytou~ezo us (-q/p)~.'t, id ~ ( p)q.v-c.id, zOe p, q ~ N, ~
[0, I ]. Rpfi 9mo~t ecnu 9 ~. (ff'/'p)q~,y.id 3anucana ~ ~uae
Ill : ( l
mo
(v(D z) q,) (x) = ~ (p,~v, id (x), ~C,,0), (2)
m=0
m. e. ae~cm~ue onepamopa v (Dx) ceoaumc a r sastene aOep - mPY'id Ha " inPvu
,q'[ f~ npe,~nee o(k~zna~enue). (~mt coxpanaezt 8ha npoOon~enua V(Dz) na ( p)q,r, ia
,lIoxa3ameat, cmoo. IIycTb 9 ~ ( p)q,7,id rt aanncaua a nnae (1) . Tor~a
0
II~011~.q,~a, id = ~ , = 0 (n!)t+~2q"lq'C")l~ < o. n o ~ o x H M ~0 M(-) : =
~ M (e,Z.r.~d(.),~(,.)> ~ m(~') , ac .o . .~o ~M ' ._,~> ~ ~ro~o~o~. .
: : m : 0 M
(M'p)~q.v.id �9
B~aqrm~_aM (v(Dx)q~ M) (x), xE N'. B [8] ~;oKa~io, wro
<Vn, @n ~,id (m) m[ . u id D~ )(P~ (x ) ,~ ) = ~.,~.) ~ ( e . : , , ( ~ ) ~ , , , ~ ~))
Kpo~e rot.o, ram xe yera~o~aena qbop~yaa
n l
n = 0
I/Icl'IOJlb~j'~ 3TII c0OTHOIIICI-IH~I, I, IMCCM
ISSN 0041-6053. Yrp. ~am, ~'vpu,, 1999, m. 51, N e lO
IqCEB}20~2HtDtDEPEHI2HAflbHbIE YPABHEHH~I H OHEPATOP o,. 1337
n~O l <Vn, D~n> ~_~ y, id q)(m)) = ( v ( D x ) ~ ) ( ~ ) = ,7.' (P,. (~),
= I1! = 0
y~oM ~l ,,~', (m m----L-" 'P. u .)! "&v,, q~C,.)) = __ ~ m : , , t x J , =
I 1 : * : !
n y. id vy, id (p(m)) c;,, p,,,_,, (~) ~ v,,, ,p~"~ ~ = = <P., (x), = ~M (x).
m=0 \ n = 0 m=0
H OTCIO~a BH/IHO, 'aTO cymec'myeT ~ ~ ( p)q, vT.id Taxoe, wro ~M M-~** ) ~ B
Torio~orrirl (ff'/'/,)~,vy, id, rlpatleM [ItPllp, q.13.v$.id -- ][q) [p q,l$ 7.ifl" rIoJIO)KHM
(v (Dz) tp ) (X) : = ~ ( x ) . . q C H O , qTO B aTOM c ~ y q a e V (Dz )
H s id H ~ ' ( p)q.vy, id) rl (v (D;c ) tp ) (x ) HMeev aria (2) (3/Iecb L ( X , Y) - -
r~HO~CeCTBO nriHeHmax Henpep~,mmax onepaTopoB, ~ef~c-rBymmnx ria mmeiaHoro TO-
noJmrnqecKoro npOCTpaHCTBa X B nnnel~Hoe TOnO~orrlqecKoe npocTpaHCTBO Y ),
JIeMMa/toKaaaHa.
HyCTb V(0) r 0. O6oaHaqm~ V(0) := 1,/V(0). ~Ic~io, qTO V H HoI0 (Nc) ,
noaroMy MO~CHO paccMaTpnaaTh onepaTop ~(Dz) . Ha JaeMMu 1 BUTeKaeT TaKOe
cJIeCCCTBHe.
C, ae~cm~ue, l l p u v(0) ;~ 0 0 n e p a m o p v ( D l ) o6pamustt, nputte.~t
v(Dz)-' = (~(Di).
3aste,tauue 2. AHaglor~qHue peay~'raT~a cnpaBe/~mmu ~ ~t~z~ npocTpaHCTB
(Hp)~,v. a , ecJm BMeCTO onepaTopa v ( D I ) ncnoz~aoaaT~ v ( c c - ~ ( D z ) ) , r z e no-
~cne~Hrifl onepaTop CTpOHTCa aHa~orriqHo v ( D z ) no qbyHKRmt V ' (0) : =
: = v ( a - ' ( O ) ) .
3. O]~HO 1.13 KYlaccHqeCKrIX IIpHMeHCrill~l O60~IIIeHHblX KBa3rlartnc1Ieablx no~,InO-
~o~ COCTOHT B pemeHmz ~tnqbqbepeHt~naa~nux ypa~rierint4 cneuaanbnoro aH/la [13]
(w 20). H~,IeHHO, IIyCTb 11 : C --> C ~ rOJIoMopc~Ha~l B 0 H C Ot)yHKRrla, I1 (0)
0, Z = exp. PaCCMOTp~{M/l~qb~epeHmta~bHoe ypaBHeHHe 6eCKOHeqI-IOFO, Boo6me
roBopa, nopa~Ka
11 ( D ) y ( u ) = f (u) , (4)
r/Ie u H C , D ~ onepaTop/IHqbkbepeHu~poBarirIa. ~ a ero petuemia ~O~HO rzpri-
MenriTb c n e a y m m a l t MeTO~: f ( u ) p a c ~ a ~ m a e T c a B pa~t f ( u ) =
= E n = 0 fn p~,id (u), r~te p~,id (U) - -o6o6merms~e IIo,rlrinOMbl A n n e , s c npOHaBO-
a~tueta dpy~KRaef~ rl (0)e "~ 0 H C . Tor~ca peRzeHae (4) I, IMCCT BH/I y (/g) =
= E ~ = 0 f" un" AitaaormlHut~ pe3yllbTaT cnpaBe~nrm ri npa a ~ id ~aaa ypaBHeHH~l
r l ( a -1 (D))y(u) = f(u).
Hay~H~ 6CCKOHeqHoMepHI~ aHan0r aToro MeTo/Ia. PaccMoTpnM nceB]iO/~HdPcl)e-
p~nI.I,H~'Ibn0e ypS~HCHHC
v (D z) y = f, (5)
r;ae v H Hol o(Nc), v(0) ~ 0.
C~c;aym~ee ya~epacaeHHe o6o6maeT tloKaaanH~ati B [ 8 ] I:~3yJlbTaT Ha c~y~all
~.
ISSN 0041-6053. Yrp. ,iwm. ~,,W. lm.. /999. m. 5 I. IW I0
1338 H.A. KAqAHOBCKIdI~I
TeopeMa 1. l lycmb f ~ (Hp)~,u 1~ ~ [0, 1 ]. TozOa ypa~nenue (5) ropper-
mtto paspeutu3to, nputtezt ec.au
f= ~ (~?'id, fn) fn ~ M ~"
' ':C '
n--0
mo peutenue u,~teem 8U(9
p e l f = = Y(') (V(Dz)f)( ' ) ~ (pnV"/'id('),fn> ~ ( P)q.('"t'.id'
n=0
zae 9(0) = z/v(e).
Ec~au Oono,~nume.abno p u q malcosbt, ~mo cyu4ecmsyem Po ~ N , Po < P ma-
roe ,~mo I l ie . l~ , l lns< ~ u -ellip.e,,ll .s < 2 q/2, zc~e ip,l~ , - - o n e p a m o p 8/to~e-
" p "
nu~ H p o H p o , II.llt4S~uop~la Fum, d e p m a - l l l ~ t u O m a , 9 maKooo, ~mo
, , H 1 sup Iv(O) l .< ~ u sup II /v (O) l < ** I ] = I m o y E ( p)q- l ,v , id . O tta-
lelpo =p lelpo =p
cmnocmu, e c n u f ~ (N) l, mo y E (N) 1 ( (N) 1 ~- (N)l,a, c~t. [8]).
t - - n f ~ l ! 3
Ecnu ~ = 1, ~ ~ no~uno,~t u p~, : = max { p ~ N: vn e .~,-t_p.CJ., ,~', . u3 paz-
I (~, , , , o ~ , , > _ , , , (Hp)q.~,,id ~o,.'re,u.R ~(O) = ~'n=O ~ . mo npu p > p~ u f ~ pe tue-
. !
hue (5) y ~ (Hp)q,7,id.
l'Iepaoe yraepTr, JlenHe Henocpe/~craeHno c,qe/IyeT Ha .qeMbi~ 1; ocTa~bm,~e ~;oKa-
z a n u ~ [8].
3 a ~ e q a u u e 3. Ana~orriqnoe y r a e p ~ e H n e cnpaBe/1~nBO B c~'~yqae ct ~ id /I~a
ypaanermt41
V(O~ -I (Dz))y = f,
H I~ (Hp)~q.v.= v~X.,~. na/Io .,rmmb aaMcHn"~ ( p)q.'t.id Ha
4. Ec~H qbyHKtm~ Z ((x, O)), X ~ N', O ~ N c , np~ qbn~cnpo~aHHO~ O ~ -
~aeTca o6o6menHuM xapa~Tepo~ He~OTOpOia L~-rnneprpynnu (c~., aanpH~ep,
[6]), TO onepaTop o6o6meHnoro c/IaHra /Xo~mea /Iet4cTaoaaT~ aa Z no aaKouy
Tf Z((x, 0)) = Z((x , 0)) Z((Y, 0)), x, y ~ N' . PacK]m/Ibma~ Z((x, 0)) a paa Te~-
.rIopa no cxerteHJ~M 0, rto~tyqaeM (d~JOpMa.]IbrlO) paaencTao
. • o ] (P2 "~d (x). o | = r.,,~ z(!x, o>) = r: = ~
= (Pt~'id(x)' /II L ~ ,h' tyJ, /I =
) \ m=O m; ,I
: , oC; P=m(,) ,O :
l"[O~TOMy r npHH,'rrb cJze/Iylomer O['q~/Ie.neHHr
ISSN 0041-6055. Yrp. ~am. ,~y. pu., 1999. m. 51. N e 10
IICEB,/][O,~H(IXI)EPEHI.IHA.,qbHblE YPABHEHH~i H OIIEPATOP ... 1339
Q n p e ~ e ~ e m l e 2. l-lycmb Z u a yboenemoopmom nano~ennbut ebuue ycno6u-
.,,t.~t. (p = Z : = O (P~l'ct' q~ npuuaane.~um (Hp)~.l. a . OnpeOenu~t onepamop
(p)q.;((<:,,~(.))).,~), y ~ N~z, cpop-
.~0,no~
(~,X'(Xq))(x) := ~ (P,,X(<Y'a(')>)Xt(x), (p(")), (6)
If=0
m. e. Oegwm(~ue ~x,a cooaumc,q K 3a~,ene aOep .pl.a na p,~(<y,a(.))).(x.
143 TeOpeMbl I C yqeToIVl 3aMeqaHn.a 3 c.neAyeT
(~;(.aq))(x) = (X(<Y, DX)) q))(x),
x a N' , y ~ N~, q) E (ff'/'p)~,l.0t" ~]~ei.]CTBI.ITOa-IbHO, npn a = id 3TO yTBep.aKAeni, le
o'aeBnrtaO, B o6meB, l c.ay,aae c.nenyeT .muub 3ar, teTHTb, 'aTO Z ((Y, /9;r -- Z ((Y,
a ( a - t (D x ) ) ) ) . TaKHM 06pa3oM, orlpe,ae.neHne 2 KoppeKTHO, H, 6o.nee TOrO, one-
pamop o6o6utennoeo cOouza ~X,,a ne 3aoucum om a , nO3TOgy ego .~to.,~t.to 060-
3Haqumb T f . t
3a~e,~anue 4. HeTpyzHo mlaewt,, '-IT0 Z((', a(0))) ~ (J{p)~.l.a npI~ B < I,
nO~TO~y n3 (6) no.ny,~aeM ~ , Z X ( ( x , a ( 0 ) ) ) = Z ( ( x , a ( 0 ) ) ) Z ( ( y , a ( 0 ) ) ) - -
OCHOBHOe CBO~,ICTB0 onepaTopa o6o6meHHoro C/IBHFa.
B c.rte~y~omeB,~ y-rBep~aem~H yCTaHOB,neHO, '-tTO ~ ~ SIHaefiH~ Henpep~Bm, Xl~
H ~ H ~ orIepaTop, AeficTBylomrIfi H3 ( l,)q,y.a B ( p)q.y(.)~t((y,a(.))),a' Y H (X TaKHe, KaK
BIAIIIe.
H ~ JIe~Ma 2. I T y c m b (p e ( p)q,y,a pa3no~etta o p~tO no oSo6u,(enn~t
~oasuanne.aeabt.~t nonuno~ta~t c .~cgpa,~tu p~y,a (x) ~ N~ ~" . ToeOa Oe~cmoue " ~,
ceo3umc.~ ~ ~a.~tene 9mux.~Oep na p~t.)Z((y,a(.))),a (x) ~ N~ +" , m. e. ec.au
: (7)
n=O
mo
q,)(x) -- <p,,Y(.,x(<,. =
= c~, p,,, (x) | ") =
n=0\m=0
= ,~=o(,n~=o Cm-n -Pl'a,, (x)~p,~.am_ (y), tpr (8)
~OKa3aTe.qbCTSO COCTOHT B uenocpeAcTaetmoM BuqHcaleHHH C .cno~b3OBaHaeM
cl)op~yal (3) a (6).
l l pu~ep I , IIycTt, Z = exp. TorAa, s ctuIy (8) n (3)./Zsia q): Br, a a (7) aMeeM
ISSN 0041-6053, .YKp. .~tam, ~ypn.. 1999, m. 51, N ~ 10
1340 H.A. KAt'IAHOBCKHI~
(T,~Yq,)(x} = r "~p ~ (P~.'~(x}, q,C.~) = . - y
= n - m W, ~p(n}
n=O mr0
= ~ (P,,~'"Cx+y},~ c"~) = ~(x+y),
n=0
T.e. ~ x p ~iBJI.CIeTC~ l o~epaT0pOM c/IBHra apryMewra, qTO COOTBeTCTByeT KJIaCCHqe-
cxo~ cn-ryamm.
HzyqaM cBo~cvsa onepaTopa Tv z . JIJTz TOrO qT06~ Ha6e~xaa~ FIyTaHHIIIA, ~oro-
BopnMcz nncaa~ Tf 'x BMeCTO T : , eCJTH HeoaxoOuato noO~eplcnymb, qTO T z Oea-
cmoyem no nepe~tenno~ x.
Teope~a 2. Onepamop o6o6u4ennozo cO~uea T~ g, u~teem c.aeib, tou4ue cooacmea:
y
T z) To z = I ~ eOunu,cnta:t onepamop;
T3) (acco,uamuonocmb) TzZ'Y(~.Z~o)Cx) = g.z'X(T=z,)Cx), x, y, z e N 6 , ~o e
�9 (Ht,)~..:,. ;
T4) (tco~t~ffmamuonocmb) T:Z'x(g,2cp)Cx) = ~.x'X(Tzz~)Cx), x , y , z e N~:,
%} (~x~)Cx) = (T~)(y}.
~o~same.abcmeo. Ceottc'raa T l n T 5 c~e~lymT n3 ~eMMu 2; T 2 ~ n3 (6) n
yc.non~a z(O) = 1. ,l]oKa~eM CBO~CTBO T 3. Hyc'rb r HMCeT BH~ (7). I/X3 (8) CJIe-
~yCT, V-ITO
nffi0
= ~,:' ~ ( C ~~c{~'~'c')>)'~ (y}, ~"~) =
n = 0
= ~ (~c-~zc{~x,c.~}}zc{~.,~.)}).,~ (y). ~.~) =
n~O
= ~ (p~C.)zC{.,,.,~c.)})z({~,~c.}}),~ (x), ~c,,)).
n=O
AHaJIOFIu iioJI~.la~M
r.,,x.~(r:~)c~) = ~: {~,2~c~:,"c~>)~cr c''} = r:.,'Cr,,~q,}cx).
CsotlcTso T 3 ~ogasaHo. CsottcTao T 4 ]~oKa31~saeTc~ c noMott~m (8) aHa.rlormiHO
csottcvsy T3.
5. l'IpHMeaeaHe onepa~opa o6o6me~moro canara noanos~er no~yqaTb rip. Z ;~
;~ exp peays~aT~, Ka'~accR~OCK~e aHa~ol~ goTopblx GB$13aHIA C O~hIHHhIM C~BHFOM
apr3~enTa. HpHBe~eM npHMep Ta~oro poJIa. .
ISSN 0041-6053. Yrp. ~am. :~'ypu., ! 999, m. 5 / , N'; / 0
I'ICEBI2OZI, HqXDEPEHI_[HAflbHblE YPABHEHH.q H OIIEPATOP ... 1341
H p u ~ e p 2.
d p o p ~ y . a a [4]
,/:Ia~ O606tUeHUb~X IIOJIHHOMOB A n n e . h a (7( = e x p ) c n p a m e / I . n r m a
A
~m ~ N ~ ~'n H 3 pa3JIOJt~eHH~
e x p . B~ezler, t o 6 o a a a q e a a e ~ z p ~ , a (x )
r~3 (3) ~ e r g o c .ne~yeT
t!
= -,, -,,, (x) | Pn-m (Y) =
I~ = [)
E m[ p~k ,a (x )~p t~ ,a (y )~ .~rn '
k,l,mr k+l+m=n k[ l! m[
l / v ( 0 ) = ' ~ : = 0 ( '~"' o| I I y c T b T e n e p b )~
: = P , ~ ' ) Z ( ( Y ' a ( ) ) ) ' a ( x ) ( c p . c ( 8 ) ) . T o r / l a
n
~g' P~? "a(x) = E c/['P,~ " a ( x ) ~ P, IL , (y) =
m ~ 0
m !
= E k ! l ! m ! P~/ 'a (x ) @ P t r ' a (Y) @ "Y""
k.l .m~ ~+: k+l+m=n
3 a s u e q a u u e 5. B r iacToatIJ te i i CTaTbe n e p a c c M a T p a a a t o T c a n p o c T p a n c T s a
O606tlIeHHb~X d~yHKtlHti rt CB.,q3aHHble C HHMH nOH~THJL OTMeTHM, O/IHaKO, qTO
o n e p a T o p ~X t , ~ o ~ n o n p m , t e r m T b / I ~ a n o c T p o e r m a o 6 o 6 t u e n n o ~ n p o H 3 s o / l z m e ~ t
d p y n K t m n Qr'~:CI'XCTeMb~, 6 H o p T o r o n a s m n o ~ K p r . a r~ cocTas s~a~ omeR o p T o r o n a ~ b -
n~ t~ 6aaHc ~ npocTpanca~ax , / I yaS lb l - l b lX K (ff'tfp)~,~.ct (no/Ipo6aOCTr~ o QT 'a -CaCTeMe
cM. ~ [81).
A a T o p 6 s m r o / l a p e H tO . A . B e p e a a a c g o M y H F. (D. Y c y 3a n o ~ e a m a e o 6 c y a < d l e n i a J / n
3aMeqaHHll .
I. ]Ta.~etp~'uii [0. ,,/7. ~Hoprol'Olla.~ll,ln,l~ allaJiov HOJIHIIOMOB :~pMx'['a it o6pato, em4e npeo6paaonalmx
r no Helayccono~ Mepc/ /~yuglmou. anaJm3 a npaJt. - 1991. - 2 5 . N'-' 2. - C. 6 8 - 7 0 .
2. Eepe:~tttctruii I0. M., Konal),on~t~ I0. F. Herayccol~cga~ ana~ma a r n n e p r p y n m ~ / / T a M ~xe. -
1995. - 29. N a 3. - C. 5 1 - 5 5 .
3. Us G. F. Dual Appell systems in Poissonian analysis / /Meth. Funct. Anal. Topoi. - 1995. - 1,. N'-' 1.
- P . 93-108 .
4. Kondratiev Y,~. G., Streit L., Westerkamp W., Yah J. Generalized functions in infinite dimensional
analysis. - Kyoto. 1955. - 43 p. - IIAS Rept N-" 1995-002.
5. Albeverio S.. Daletzky Yu. L., Kondratiev Yu. G.. Streit L. Non-Gaussian infinite dimensional
analysis / /J . Funct. Anal. - 1996. - 138, N'-' 2. - P 311-350 .
6. Berezansky Yu. M.. Kondratiev Yu. G. Biorthogonal systems in hypergroups: an extension of non-
Gaussian analysis / /Meth. Funct. Anal. Topo i . - 1996 . - 2, N'-' 2 . - P. 1-50 .
7. Eepe3attctculi 10. M. [~ecgolleqlloMepllhli.1 llel'aycconcKHll ana~m3 rl onepaTophl o6o61RetnlOl'O
cltnrwa H ~nJHgttHou. apaJm3 H npHJk - 1996. - 30. N u 4. - C. 61-65 .
8. Kachanovsky N. A. Biorthogonal Appell-like systems in a Hilbert space II Meth. Funct. Anal.
Topoi. - 1996. - 2. N'-' 3, 4. - P. 36 -52 .
9. Katta?tonctcuii H. A./lyaJn, uaa cnereMa AnneJla n npoc'rpaucTna Ko~Itpa'n,elm n ana~m~ na npo-
cTpanen~ax ll l l ;aplta//YKp. MaT. xxypn. -- 1997. --49. N'-' 4. - C. 527 -534 .
10. Eepestttts 10. M. [:]eCKOlleqllOMepln:,lfl alladlH3. ClDlaallllldlt C oneparopo~4 o6o6111enllOl'O ClU'~t, l r a
//TaM ~e . - N o 3. - C. 364-40%
I 1. Ka~antmcm~ii H. A., Yc" F. O. BHop,oronaJJhtmle cHc'ret, ua Anne~la i~ aHaJm3e na ltyaJmno-altep-
max npoerpmlc'n~ax//~Dyugnr~ou, aHa~ma n npa~t. - 1998. - '32, N'-' 1. - C. 6 9 - 7 2 .
12. Berezansky Yu. M. Construction of generalized translation operators from the system of Appell
characters / /Trans. Amer. Math. S o c . - 1998. - 184, N e 2. - P. 7 - 2 1 .
13. Boas R. P.. Buck R. C. Polynomial expansions of analytic functions. - Bedin: Springer, 1964. -
77 p.
FIwiyqeno28.01.98
iSSN 0041-6053. Ytcp: ,~,am. ~.'vpn.. 1999. m. 51. IV a I0
|