О наилучшем приближении функций n переменных
Запропоновано поний підхід до розв'язання задачі про найкраще наближення деяким підпростором функцій n змінних, що задаються обмеженнями на модуль неперервності деяких частинних похідних. Цей підхід грунтується на теоремі двоїстості та на зображенні функції як зчисленної суми простих....
Збережено в:
Дата: | 1999 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Інститут математики НАН України
1999
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/157239 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | О наилучшем приближении функций n переменных / М.П. Корнейчук // Український математичний журнал. — 1999. — Т. 51, № 10. — С. 1352–1359. — Бібліогр.: 8 назв. — укр. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Запропоновано поний підхід до розв'язання задачі про найкраще наближення деяким підпростором функцій n змінних, що задаються обмеженнями на модуль неперервності деяких частинних похідних. Цей підхід грунтується на теоремі двоїстості та на зображенні функції як зчисленної суми простих. |
---|