Rings which have (m,n)-flat injective modules
A ring R is said to be a left IF − (m, n) ring if every injective left R-module is (m, n)-flat. In this paper, several characterizations of left IF − (m, n) rings are investigated, some conditions under which R is left IF−(m, n) are given. Furthermore, conditions under which a left IF −1 ring (i...
Збережено в:
Дата: | 2005 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2005
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/157333 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Rings which have (m,n)-flat injective modules / Z. Zhanmin, X. Zhangsheng // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 4. — С. 93–100. — Бібліогр.: 12 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-157333 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1573332019-06-21T01:26:15Z Rings which have (m,n)-flat injective modules Zhanmin, Z. Zhangsheng, X. A ring R is said to be a left IF − (m, n) ring if every injective left R-module is (m, n)-flat. In this paper, several characterizations of left IF − (m, n) rings are investigated, some conditions under which R is left IF−(m, n) are given. Furthermore, conditions under which a left IF −1 ring (i.e., IF −(1, 1) ring) is a field, a regular ring and a semisimple ring are studied respectively. 2005 Article Rings which have (m,n)-flat injective modules / Z. Zhanmin, X. Zhangsheng // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 4. — С. 93–100. — Бібліогр.: 12 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 16D50, 16E65. http://dspace.nbuv.gov.ua/handle/123456789/157333 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
A ring R is said to be a left IF − (m, n) ring if
every injective left R-module is (m, n)-flat. In this paper, several
characterizations of left IF − (m, n) rings are investigated, some
conditions under which R is left IF−(m, n) are given. Furthermore,
conditions under which a left IF −1 ring (i.e., IF −(1, 1) ring) is a
field, a regular ring and a semisimple ring are studied respectively. |
format |
Article |
author |
Zhanmin, Z. Zhangsheng, X. |
spellingShingle |
Zhanmin, Z. Zhangsheng, X. Rings which have (m,n)-flat injective modules Algebra and Discrete Mathematics |
author_facet |
Zhanmin, Z. Zhangsheng, X. |
author_sort |
Zhanmin, Z. |
title |
Rings which have (m,n)-flat injective modules |
title_short |
Rings which have (m,n)-flat injective modules |
title_full |
Rings which have (m,n)-flat injective modules |
title_fullStr |
Rings which have (m,n)-flat injective modules |
title_full_unstemmed |
Rings which have (m,n)-flat injective modules |
title_sort |
rings which have (m,n)-flat injective modules |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2005 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/157333 |
citation_txt |
Rings which have (m,n)-flat injective modules / Z. Zhanmin, X. Zhangsheng // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 4. — С. 93–100. — Бібліогр.: 12 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT zhanminz ringswhichhavemnflatinjectivemodules AT zhangshengx ringswhichhavemnflatinjectivemodules |
first_indexed |
2023-05-20T17:51:48Z |
last_indexed |
2023-05-20T17:51:48Z |
_version_ |
1796154259056623616 |