Rings which have (m,n)-flat injective modules

A ring R is said to be a left IF − (m, n) ring if every injective left R-module is (m, n)-flat. In this paper, several characterizations of left IF − (m, n) rings are investigated, some conditions under which R is left IF−(m, n) are given. Furthermore, conditions under which a left IF −1 ring (i...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2005
Автори: Zhanmin, Z., Zhangsheng, X.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2005
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/157333
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Rings which have (m,n)-flat injective modules / Z. Zhanmin, X. Zhangsheng // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 4. — С. 93–100. — Бібліогр.: 12 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-157333
record_format dspace
spelling irk-123456789-1573332019-06-21T01:26:15Z Rings which have (m,n)-flat injective modules Zhanmin, Z. Zhangsheng, X. A ring R is said to be a left IF − (m, n) ring if every injective left R-module is (m, n)-flat. In this paper, several characterizations of left IF − (m, n) rings are investigated, some conditions under which R is left IF−(m, n) are given. Furthermore, conditions under which a left IF −1 ring (i.e., IF −(1, 1) ring) is a field, a regular ring and a semisimple ring are studied respectively. 2005 Article Rings which have (m,n)-flat injective modules / Z. Zhanmin, X. Zhangsheng // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 4. — С. 93–100. — Бібліогр.: 12 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 16D50, 16E65. http://dspace.nbuv.gov.ua/handle/123456789/157333 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A ring R is said to be a left IF − (m, n) ring if every injective left R-module is (m, n)-flat. In this paper, several characterizations of left IF − (m, n) rings are investigated, some conditions under which R is left IF−(m, n) are given. Furthermore, conditions under which a left IF −1 ring (i.e., IF −(1, 1) ring) is a field, a regular ring and a semisimple ring are studied respectively.
format Article
author Zhanmin, Z.
Zhangsheng, X.
spellingShingle Zhanmin, Z.
Zhangsheng, X.
Rings which have (m,n)-flat injective modules
Algebra and Discrete Mathematics
author_facet Zhanmin, Z.
Zhangsheng, X.
author_sort Zhanmin, Z.
title Rings which have (m,n)-flat injective modules
title_short Rings which have (m,n)-flat injective modules
title_full Rings which have (m,n)-flat injective modules
title_fullStr Rings which have (m,n)-flat injective modules
title_full_unstemmed Rings which have (m,n)-flat injective modules
title_sort rings which have (m,n)-flat injective modules
publisher Інститут прикладної математики і механіки НАН України
publishDate 2005
url http://dspace.nbuv.gov.ua/handle/123456789/157333
citation_txt Rings which have (m,n)-flat injective modules / Z. Zhanmin, X. Zhangsheng // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 4. — С. 93–100. — Бібліогр.: 12 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT zhanminz ringswhichhavemnflatinjectivemodules
AT zhangshengx ringswhichhavemnflatinjectivemodules
first_indexed 2023-05-20T17:51:48Z
last_indexed 2023-05-20T17:51:48Z
_version_ 1796154259056623616