Presentations and word problem for strong semilattices of semigroups

Let I be a semilattice, and Si (i ∈ I) be a family of disjoint semigroups. Then we prove that the strong semilattice S = S[I, Si , φj,i] of semigroups Si with homomorphisms φj,i : Sj → Si (j ≥ i) is finitely presented if and only if I is finite and each Si (i ∈ I) is finitely presented. Moreove...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2005
Автори: Ayık, G., Ayık, H., Unlu, Y.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2005
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/157334
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Presentations and word problem for strong semilattices of semigroups / G. Ayık, H. Ayık, Y. Unlu // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 4. — С. 28–35. — Бібліогр.: 11 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Let I be a semilattice, and Si (i ∈ I) be a family of disjoint semigroups. Then we prove that the strong semilattice S = S[I, Si , φj,i] of semigroups Si with homomorphisms φj,i : Sj → Si (j ≥ i) is finitely presented if and only if I is finite and each Si (i ∈ I) is finitely presented. Moreover, for a finite semilattice I, S has a soluble word problem if and only if each Si (i ∈ I) has a soluble word problem. Finally, we give an example of nonautomatic semigroup which has a soluble word problem.