Presentations and word problem for strong semilattices of semigroups

Let I be a semilattice, and Si (i ∈ I) be a family of disjoint semigroups. Then we prove that the strong semilattice S = S[I, Si , φj,i] of semigroups Si with homomorphisms φj,i : Sj → Si (j ≥ i) is finitely presented if and only if I is finite and each Si (i ∈ I) is finitely presented. Moreove...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2005
Автори: Ayık, G., Ayık, H., Unlu, Y.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2005
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/157334
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Presentations and word problem for strong semilattices of semigroups / G. Ayık, H. Ayık, Y. Unlu // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 4. — С. 28–35. — Бібліогр.: 11 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-157334
record_format dspace
spelling irk-123456789-1573342019-06-21T01:26:43Z Presentations and word problem for strong semilattices of semigroups Ayık, G. Ayık, H. Unlu, Y. Let I be a semilattice, and Si (i ∈ I) be a family of disjoint semigroups. Then we prove that the strong semilattice S = S[I, Si , φj,i] of semigroups Si with homomorphisms φj,i : Sj → Si (j ≥ i) is finitely presented if and only if I is finite and each Si (i ∈ I) is finitely presented. Moreover, for a finite semilattice I, S has a soluble word problem if and only if each Si (i ∈ I) has a soluble word problem. Finally, we give an example of nonautomatic semigroup which has a soluble word problem. 2005 Article Presentations and word problem for strong semilattices of semigroups / G. Ayık, H. Ayık, Y. Unlu // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 4. — С. 28–35. — Бібліогр.: 11 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 20M05. http://dspace.nbuv.gov.ua/handle/123456789/157334 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Let I be a semilattice, and Si (i ∈ I) be a family of disjoint semigroups. Then we prove that the strong semilattice S = S[I, Si , φj,i] of semigroups Si with homomorphisms φj,i : Sj → Si (j ≥ i) is finitely presented if and only if I is finite and each Si (i ∈ I) is finitely presented. Moreover, for a finite semilattice I, S has a soluble word problem if and only if each Si (i ∈ I) has a soluble word problem. Finally, we give an example of nonautomatic semigroup which has a soluble word problem.
format Article
author Ayık, G.
Ayık, H.
Unlu, Y.
spellingShingle Ayık, G.
Ayık, H.
Unlu, Y.
Presentations and word problem for strong semilattices of semigroups
Algebra and Discrete Mathematics
author_facet Ayık, G.
Ayık, H.
Unlu, Y.
author_sort Ayık, G.
title Presentations and word problem for strong semilattices of semigroups
title_short Presentations and word problem for strong semilattices of semigroups
title_full Presentations and word problem for strong semilattices of semigroups
title_fullStr Presentations and word problem for strong semilattices of semigroups
title_full_unstemmed Presentations and word problem for strong semilattices of semigroups
title_sort presentations and word problem for strong semilattices of semigroups
publisher Інститут прикладної математики і механіки НАН України
publishDate 2005
url http://dspace.nbuv.gov.ua/handle/123456789/157334
citation_txt Presentations and word problem for strong semilattices of semigroups / G. Ayık, H. Ayık, Y. Unlu // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 4. — С. 28–35. — Бібліогр.: 11 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT ayıkg presentationsandwordproblemforstrongsemilatticesofsemigroups
AT ayıkh presentationsandwordproblemforstrongsemilatticesofsemigroups
AT unluy presentationsandwordproblemforstrongsemilatticesofsemigroups
first_indexed 2023-05-20T17:51:48Z
last_indexed 2023-05-20T17:51:48Z
_version_ 1796154259161481216