Normal functors in the coarse category
We define the canonical coarse structure on the spaces of the form FX, where F is a finitary normal functor of finite degree and show that every finitary (i.e., preserving the class of finite spaces) normal functor of finite degree in Comp has its counterpart in the coarse category.
Збережено в:
Дата: | 2005 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2005
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/157339 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Normal functors in the coarse category / V. Frider // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 4. — С. 16–27. — Бібліогр.: 8 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-157339 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1573392019-06-21T01:26:19Z Normal functors in the coarse category Frider, V. We define the canonical coarse structure on the spaces of the form FX, where F is a finitary normal functor of finite degree and show that every finitary (i.e., preserving the class of finite spaces) normal functor of finite degree in Comp has its counterpart in the coarse category. 2005 Article Normal functors in the coarse category / V. Frider // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 4. — С. 16–27. — Бібліогр.: 8 назв. — англ. 1726-3255 http://dspace.nbuv.gov.ua/handle/123456789/157339 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We define the canonical coarse structure on the
spaces of the form FX, where F is a finitary normal functor of
finite degree and show that every finitary (i.e., preserving the class
of finite spaces) normal functor of finite degree in Comp has its
counterpart in the coarse category. |
format |
Article |
author |
Frider, V. |
spellingShingle |
Frider, V. Normal functors in the coarse category Algebra and Discrete Mathematics |
author_facet |
Frider, V. |
author_sort |
Frider, V. |
title |
Normal functors in the coarse category |
title_short |
Normal functors in the coarse category |
title_full |
Normal functors in the coarse category |
title_fullStr |
Normal functors in the coarse category |
title_full_unstemmed |
Normal functors in the coarse category |
title_sort |
normal functors in the coarse category |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2005 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/157339 |
citation_txt |
Normal functors in the coarse category / V. Frider // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 4. — С. 16–27. — Бібліогр.: 8 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT friderv normalfunctorsinthecoarsecategory |
first_indexed |
2023-05-20T17:51:49Z |
last_indexed |
2023-05-20T17:51:49Z |
_version_ |
1796154259686817792 |