Groups associated with modules over nearrings
We construct a group D(I, T) associated with the pair (I, T), where I is a nontrivial distributive submodule of a left N-module G, T is a nontrivial subgroup of the unit group U(N) of a right nearring N with an identity element, and find criteria for D(I, T) to be a Frobenius group. We construc...
Збережено в:
Дата: | 2007 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2007
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/157341 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Groups associated with modules over nearrings / O.D. Artemovych, I.V. Kravets // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 2. — С. 16–21. — Бібліогр.: 4 назв. — англ. |
Репозиторії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We construct a group D(I, T) associated with the
pair (I, T), where I is a nontrivial distributive submodule of a left
N-module G, T is a nontrivial subgroup of the unit group U(N) of
a right nearring N with an identity element, and find criteria for
D(I, T) to be a Frobenius group.
We construct a group D(I, T) associated with the
pair (I, T), where I is a nontrivial distributive submodule of a left
N-module G, T is a nontrivial subgroup of the unit group U(N) of
a right nearring N with an identity element, and find criteria for
D(I, T) to be a Frobenius group. |
---|