Groups associated with modules over nearrings
We construct a group D(I, T) associated with the pair (I, T), where I is a nontrivial distributive submodule of a left N-module G, T is a nontrivial subgroup of the unit group U(N) of a right nearring N with an identity element, and find criteria for D(I, T) to be a Frobenius group. We construc...
Збережено в:
Дата: | 2007 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2007
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/157341 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Groups associated with modules over nearrings / O.D. Artemovych, I.V. Kravets // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 2. — С. 16–21. — Бібліогр.: 4 назв. — англ. |
Репозиторії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-157341 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1573412019-06-21T01:30:14Z Groups associated with modules over nearrings Artemovych, O.D. Kravets, I.V. We construct a group D(I, T) associated with the pair (I, T), where I is a nontrivial distributive submodule of a left N-module G, T is a nontrivial subgroup of the unit group U(N) of a right nearring N with an identity element, and find criteria for D(I, T) to be a Frobenius group. We construct a group D(I, T) associated with the pair (I, T), where I is a nontrivial distributive submodule of a left N-module G, T is a nontrivial subgroup of the unit group U(N) of a right nearring N with an identity element, and find criteria for D(I, T) to be a Frobenius group. 2007 Article Groups associated with modules over nearrings / O.D. Artemovych, I.V. Kravets // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 2. — С. 16–21. — Бібліогр.: 4 назв. — англ. 1726-3255 http://dspace.nbuv.gov.ua/handle/123456789/157341 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We construct a group D(I, T) associated with the
pair (I, T), where I is a nontrivial distributive submodule of a left
N-module G, T is a nontrivial subgroup of the unit group U(N) of
a right nearring N with an identity element, and find criteria for
D(I, T) to be a Frobenius group.
We construct a group D(I, T) associated with the
pair (I, T), where I is a nontrivial distributive submodule of a left
N-module G, T is a nontrivial subgroup of the unit group U(N) of
a right nearring N with an identity element, and find criteria for
D(I, T) to be a Frobenius group. |
format |
Article |
author |
Artemovych, O.D. Kravets, I.V. |
spellingShingle |
Artemovych, O.D. Kravets, I.V. Groups associated with modules over nearrings Algebra and Discrete Mathematics |
author_facet |
Artemovych, O.D. Kravets, I.V. |
author_sort |
Artemovych, O.D. |
title |
Groups associated with modules over nearrings |
title_short |
Groups associated with modules over nearrings |
title_full |
Groups associated with modules over nearrings |
title_fullStr |
Groups associated with modules over nearrings |
title_full_unstemmed |
Groups associated with modules over nearrings |
title_sort |
groups associated with modules over nearrings |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2007 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/157341 |
citation_txt |
Groups associated with modules over nearrings / O.D. Artemovych, I.V. Kravets // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 2. — С. 16–21. — Бібліогр.: 4 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT artemovychod groupsassociatedwithmodulesovernearrings AT kravetsiv groupsassociatedwithmodulesovernearrings |
first_indexed |
2023-05-20T17:52:30Z |
last_indexed |
2023-05-20T17:52:30Z |
_version_ |
1796154293390147584 |