Bandwidth reduction in rectangular grids
We show that the bandwidth of a square twodimensional grid of arbitrary size can be reduced if two (but not less than two) edges are deleted. The two deleted edges may not be chosen arbitrarily, but they may be chosen to share a common endpoint or to be non-adjacent. We also show that the bandwi...
Збережено в:
Дата: | 2007 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2007
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/157342 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Bandwidth reduction in rectangular grids / T. Andreescu, W. Stromquist, Z. Sunic // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 2. — С. 1–15. — Бібліогр.: 3 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-157342 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1573422019-06-21T01:30:15Z Bandwidth reduction in rectangular grids Andreescu, T. Stromquist, W. Sunic, Z. We show that the bandwidth of a square twodimensional grid of arbitrary size can be reduced if two (but not less than two) edges are deleted. The two deleted edges may not be chosen arbitrarily, but they may be chosen to share a common endpoint or to be non-adjacent. We also show that the bandwidth of the rectangular n × m (n ≤ m) grid can be reduced by k, for all k that are sufficiently small, if m − n + 2k edges are deleted. 2007 Article Bandwidth reduction in rectangular grids / T. Andreescu, W. Stromquist, Z. Sunic // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 2. — С. 1–15. — Бібліогр.: 3 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 05C78. http://dspace.nbuv.gov.ua/handle/123456789/157342 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We show that the bandwidth of a square twodimensional grid of arbitrary size can be reduced if two (but not
less than two) edges are deleted. The two deleted edges may not
be chosen arbitrarily, but they may be chosen to share a common
endpoint or to be non-adjacent.
We also show that the bandwidth of the rectangular n × m
(n ≤ m) grid can be reduced by k, for all k that are sufficiently
small, if m − n + 2k edges are deleted. |
format |
Article |
author |
Andreescu, T. Stromquist, W. Sunic, Z. |
spellingShingle |
Andreescu, T. Stromquist, W. Sunic, Z. Bandwidth reduction in rectangular grids Algebra and Discrete Mathematics |
author_facet |
Andreescu, T. Stromquist, W. Sunic, Z. |
author_sort |
Andreescu, T. |
title |
Bandwidth reduction in rectangular grids |
title_short |
Bandwidth reduction in rectangular grids |
title_full |
Bandwidth reduction in rectangular grids |
title_fullStr |
Bandwidth reduction in rectangular grids |
title_full_unstemmed |
Bandwidth reduction in rectangular grids |
title_sort |
bandwidth reduction in rectangular grids |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2007 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/157342 |
citation_txt |
Bandwidth reduction in rectangular grids / T. Andreescu, W. Stromquist, Z. Sunic // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 2. — С. 1–15. — Бібліогр.: 3 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT andreescut bandwidthreductioninrectangulargrids AT stromquistw bandwidthreductioninrectangulargrids AT sunicz bandwidthreductioninrectangulargrids |
first_indexed |
2023-05-20T17:52:30Z |
last_indexed |
2023-05-20T17:52:30Z |
_version_ |
1796154293496053760 |