R-S correspondence for the Hyper-octahedral group of type Bn - A different approach
In this paper we develop a Robinson Schensted algorithm for the hyperoctahedral group of type Bn on partitions of ( 1 2 r(r + 1) + 2n) whose 2−core is δr, r ≥ 0 where δr is the partition with parts (r, r−1, . . . , 0). We derive some combinatorial properties associated with this correspondenc...
Збережено в:
Дата: | 2007 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2007
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/157345 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | R-S correspondence for the Hyper-octahedral group of type Bn - A different approach / M. Parvathi, B. Sivakumar, A. Tamilselvi // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 1. — С. 86–107. — Бібліогр.: 15 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | In this paper we develop a Robinson Schensted
algorithm for the hyperoctahedral group of type Bn on partitions
of (
1
2
r(r + 1) + 2n) whose 2−core is δr, r ≥ 0 where δr is the
partition with parts (r, r−1, . . . , 0). We derive some combinatorial
properties associated with this correspondence. |
---|