2025-02-23T16:53:03-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-157345%22&qt=morelikethis&rows=5
2025-02-23T16:53:03-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-157345%22&qt=morelikethis&rows=5
2025-02-23T16:53:03-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T16:53:03-05:00 DEBUG: Deserialized SOLR response

R-S correspondence for the Hyper-octahedral group of type Bn - A different approach

In this paper we develop a Robinson Schensted algorithm for the hyperoctahedral group of type Bn on partitions of ( 1 2 r(r + 1) + 2n) whose 2−core is δr, r ≥ 0 where δr is the partition with parts (r, r−1, . . . , 0). We derive some combinatorial properties associated with this correspondenc...

Full description

Saved in:
Bibliographic Details
Main Authors: Parvathi, M., Sivakumar, B., Tamilselvi, A.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2007
Series:Algebra and Discrete Mathematics
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/157345
Tags: Add Tag
No Tags, Be the first to tag this record!
id irk-123456789-157345
record_format dspace
spelling irk-123456789-1573452019-06-21T01:30:06Z R-S correspondence for the Hyper-octahedral group of type Bn - A different approach Parvathi, M. Sivakumar, B. Tamilselvi, A. In this paper we develop a Robinson Schensted algorithm for the hyperoctahedral group of type Bn on partitions of ( 1 2 r(r + 1) + 2n) whose 2−core is δr, r ≥ 0 where δr is the partition with parts (r, r−1, . . . , 0). We derive some combinatorial properties associated with this correspondence. 2007 Article R-S correspondence for the Hyper-octahedral group of type Bn - A different approach / M. Parvathi, B. Sivakumar, A. Tamilselvi // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 1. — С. 86–107. — Бібліогр.: 15 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 05E10, 20C30 http://dspace.nbuv.gov.ua/handle/123456789/157345 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this paper we develop a Robinson Schensted algorithm for the hyperoctahedral group of type Bn on partitions of ( 1 2 r(r + 1) + 2n) whose 2−core is δr, r ≥ 0 where δr is the partition with parts (r, r−1, . . . , 0). We derive some combinatorial properties associated with this correspondence.
format Article
author Parvathi, M.
Sivakumar, B.
Tamilselvi, A.
spellingShingle Parvathi, M.
Sivakumar, B.
Tamilselvi, A.
R-S correspondence for the Hyper-octahedral group of type Bn - A different approach
Algebra and Discrete Mathematics
author_facet Parvathi, M.
Sivakumar, B.
Tamilselvi, A.
author_sort Parvathi, M.
title R-S correspondence for the Hyper-octahedral group of type Bn - A different approach
title_short R-S correspondence for the Hyper-octahedral group of type Bn - A different approach
title_full R-S correspondence for the Hyper-octahedral group of type Bn - A different approach
title_fullStr R-S correspondence for the Hyper-octahedral group of type Bn - A different approach
title_full_unstemmed R-S correspondence for the Hyper-octahedral group of type Bn - A different approach
title_sort r-s correspondence for the hyper-octahedral group of type bn - a different approach
publisher Інститут прикладної математики і механіки НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/157345
citation_txt R-S correspondence for the Hyper-octahedral group of type Bn - A different approach / M. Parvathi, B. Sivakumar, A. Tamilselvi // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 1. — С. 86–107. — Бібліогр.: 15 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT parvathim rscorrespondenceforthehyperoctahedralgroupoftypebnadifferentapproach
AT sivakumarb rscorrespondenceforthehyperoctahedralgroupoftypebnadifferentapproach
AT tamilselvia rscorrespondenceforthehyperoctahedralgroupoftypebnadifferentapproach
first_indexed 2023-05-20T17:52:31Z
last_indexed 2023-05-20T17:52:31Z
_version_ 1796154293828452352