R-S correspondence for the Hyper-octahedral group of type Bn - A different approach
In this paper we develop a Robinson Schensted algorithm for the hyperoctahedral group of type Bn on partitions of ( 1 2 r(r + 1) + 2n) whose 2−core is δr, r ≥ 0 where δr is the partition with parts (r, r−1, . . . , 0). We derive some combinatorial properties associated with this correspondenc...
Збережено в:
Дата: | 2007 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2007
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/157345 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | R-S correspondence for the Hyper-octahedral group of type Bn - A different approach / M. Parvathi, B. Sivakumar, A. Tamilselvi // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 1. — С. 86–107. — Бібліогр.: 15 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-157345 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1573452019-06-21T01:30:06Z R-S correspondence for the Hyper-octahedral group of type Bn - A different approach Parvathi, M. Sivakumar, B. Tamilselvi, A. In this paper we develop a Robinson Schensted algorithm for the hyperoctahedral group of type Bn on partitions of ( 1 2 r(r + 1) + 2n) whose 2−core is δr, r ≥ 0 where δr is the partition with parts (r, r−1, . . . , 0). We derive some combinatorial properties associated with this correspondence. 2007 Article R-S correspondence for the Hyper-octahedral group of type Bn - A different approach / M. Parvathi, B. Sivakumar, A. Tamilselvi // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 1. — С. 86–107. — Бібліогр.: 15 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 05E10, 20C30 http://dspace.nbuv.gov.ua/handle/123456789/157345 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
In this paper we develop a Robinson Schensted
algorithm for the hyperoctahedral group of type Bn on partitions
of (
1
2
r(r + 1) + 2n) whose 2−core is δr, r ≥ 0 where δr is the
partition with parts (r, r−1, . . . , 0). We derive some combinatorial
properties associated with this correspondence. |
format |
Article |
author |
Parvathi, M. Sivakumar, B. Tamilselvi, A. |
spellingShingle |
Parvathi, M. Sivakumar, B. Tamilselvi, A. R-S correspondence for the Hyper-octahedral group of type Bn - A different approach Algebra and Discrete Mathematics |
author_facet |
Parvathi, M. Sivakumar, B. Tamilselvi, A. |
author_sort |
Parvathi, M. |
title |
R-S correspondence for the Hyper-octahedral group of type Bn - A different approach |
title_short |
R-S correspondence for the Hyper-octahedral group of type Bn - A different approach |
title_full |
R-S correspondence for the Hyper-octahedral group of type Bn - A different approach |
title_fullStr |
R-S correspondence for the Hyper-octahedral group of type Bn - A different approach |
title_full_unstemmed |
R-S correspondence for the Hyper-octahedral group of type Bn - A different approach |
title_sort |
r-s correspondence for the hyper-octahedral group of type bn - a different approach |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2007 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/157345 |
citation_txt |
R-S correspondence for the Hyper-octahedral group of type Bn - A different approach / M. Parvathi, B. Sivakumar, A. Tamilselvi // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 1. — С. 86–107. — Бібліогр.: 15 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT parvathim rscorrespondenceforthehyperoctahedralgroupoftypebnadifferentapproach AT sivakumarb rscorrespondenceforthehyperoctahedralgroupoftypebnadifferentapproach AT tamilselvia rscorrespondenceforthehyperoctahedralgroupoftypebnadifferentapproach |
first_indexed |
2023-05-20T17:52:31Z |
last_indexed |
2023-05-20T17:52:31Z |
_version_ |
1796154293828452352 |