Integral group ring of the McLaughlin simple group
We consider the Zassenhaus conjecture for the normalized unit group of the integral group ring of the McLaughlin sporadic group McL. As a consequence, we confirm for this group the Kimmerle’s conjecture on prime graphs.
Збережено в:
Дата: | 2007 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2007
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/157353 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Integral group ring of the McLaughlin simple group / V.A. Bovdi, A.B. Konovalov // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 2. — С. 43–53. — Бібліогр.: 26 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-157353 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1573532019-06-21T01:28:39Z Integral group ring of the McLaughlin simple group Bovdi, V.A. Konovalov, A.B. We consider the Zassenhaus conjecture for the normalized unit group of the integral group ring of the McLaughlin sporadic group McL. As a consequence, we confirm for this group the Kimmerle’s conjecture on prime graphs. 2007 Article Integral group ring of the McLaughlin simple group / V.A. Bovdi, A.B. Konovalov // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 2. — С. 43–53. — Бібліогр.: 26 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 16S34, 20C05; 20D08. http://dspace.nbuv.gov.ua/handle/123456789/157353 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We consider the Zassenhaus conjecture for the
normalized unit group of the integral group ring of the McLaughlin
sporadic group McL. As a consequence, we confirm for this group
the Kimmerle’s conjecture on prime graphs. |
format |
Article |
author |
Bovdi, V.A. Konovalov, A.B. |
spellingShingle |
Bovdi, V.A. Konovalov, A.B. Integral group ring of the McLaughlin simple group Algebra and Discrete Mathematics |
author_facet |
Bovdi, V.A. Konovalov, A.B. |
author_sort |
Bovdi, V.A. |
title |
Integral group ring of the McLaughlin simple group |
title_short |
Integral group ring of the McLaughlin simple group |
title_full |
Integral group ring of the McLaughlin simple group |
title_fullStr |
Integral group ring of the McLaughlin simple group |
title_full_unstemmed |
Integral group ring of the McLaughlin simple group |
title_sort |
integral group ring of the mclaughlin simple group |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2007 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/157353 |
citation_txt |
Integral group ring of the McLaughlin simple group / V.A. Bovdi, A.B. Konovalov // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 2. — С. 43–53. — Бібліогр.: 26 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT bovdiva integralgroupringofthemclaughlinsimplegroup AT konovalovab integralgroupringofthemclaughlinsimplegroup |
first_indexed |
2023-05-20T17:52:31Z |
last_indexed |
2023-05-20T17:52:31Z |
_version_ |
1796154294356934656 |