On H-closed topological semigroups and semilattices

In this paper, we show that if S is an H-closed topological semigroup and e is an idempotent of S, then eSe is an H-closed topological semigroup. We give sufficient conditions on a linearly ordered topological semilattice to be H-closed. Also we prove that any H-closed locally compact topologica...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автори: Chuchman, I., Gutik, O.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2007
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/157357
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On H-closed topological semigroups and semilattices / I. Chuchman, O. Gutik // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 1. — С. 13–23. — Бібліогр.: 10 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-157357
record_format dspace
spelling irk-123456789-1573572019-06-21T01:27:59Z On H-closed topological semigroups and semilattices Chuchman, I. Gutik, O. In this paper, we show that if S is an H-closed topological semigroup and e is an idempotent of S, then eSe is an H-closed topological semigroup. We give sufficient conditions on a linearly ordered topological semilattice to be H-closed. Also we prove that any H-closed locally compact topological semilattice and any H-closed topological weakly U-semilattice contain minimal idempotents. An example of a countably compact topological semilattice whose topological space is H-closed is constructed. 2007 Article On H-closed topological semigroups and semilattices / I. Chuchman, O. Gutik // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 1. — С. 13–23. — Бібліогр.: 10 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 06A12, 06F30; 22A15, 22A26, 54H12. http://dspace.nbuv.gov.ua/handle/123456789/157357 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this paper, we show that if S is an H-closed topological semigroup and e is an idempotent of S, then eSe is an H-closed topological semigroup. We give sufficient conditions on a linearly ordered topological semilattice to be H-closed. Also we prove that any H-closed locally compact topological semilattice and any H-closed topological weakly U-semilattice contain minimal idempotents. An example of a countably compact topological semilattice whose topological space is H-closed is constructed.
format Article
author Chuchman, I.
Gutik, O.
spellingShingle Chuchman, I.
Gutik, O.
On H-closed topological semigroups and semilattices
Algebra and Discrete Mathematics
author_facet Chuchman, I.
Gutik, O.
author_sort Chuchman, I.
title On H-closed topological semigroups and semilattices
title_short On H-closed topological semigroups and semilattices
title_full On H-closed topological semigroups and semilattices
title_fullStr On H-closed topological semigroups and semilattices
title_full_unstemmed On H-closed topological semigroups and semilattices
title_sort on h-closed topological semigroups and semilattices
publisher Інститут прикладної математики і механіки НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/157357
citation_txt On H-closed topological semigroups and semilattices / I. Chuchman, O. Gutik // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 1. — С. 13–23. — Бібліогр.: 10 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT chuchmani onhclosedtopologicalsemigroupsandsemilattices
AT gutiko onhclosedtopologicalsemigroupsandsemilattices
first_indexed 2023-05-20T17:52:02Z
last_indexed 2023-05-20T17:52:02Z
_version_ 1796154275147022336