On H-closed topological semigroups and semilattices
In this paper, we show that if S is an H-closed topological semigroup and e is an idempotent of S, then eSe is an H-closed topological semigroup. We give sufficient conditions on a linearly ordered topological semilattice to be H-closed. Also we prove that any H-closed locally compact topologica...
Збережено в:
Дата: | 2007 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2007
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/157357 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On H-closed topological semigroups and semilattices / I. Chuchman, O. Gutik // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 1. — С. 13–23. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-157357 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1573572019-06-21T01:27:59Z On H-closed topological semigroups and semilattices Chuchman, I. Gutik, O. In this paper, we show that if S is an H-closed topological semigroup and e is an idempotent of S, then eSe is an H-closed topological semigroup. We give sufficient conditions on a linearly ordered topological semilattice to be H-closed. Also we prove that any H-closed locally compact topological semilattice and any H-closed topological weakly U-semilattice contain minimal idempotents. An example of a countably compact topological semilattice whose topological space is H-closed is constructed. 2007 Article On H-closed topological semigroups and semilattices / I. Chuchman, O. Gutik // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 1. — С. 13–23. — Бібліогр.: 10 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 06A12, 06F30; 22A15, 22A26, 54H12. http://dspace.nbuv.gov.ua/handle/123456789/157357 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
In this paper, we show that if S is an H-closed
topological semigroup and e is an idempotent of S, then eSe is
an H-closed topological semigroup. We give sufficient conditions
on a linearly ordered topological semilattice to be H-closed. Also
we prove that any H-closed locally compact topological semilattice
and any H-closed topological weakly U-semilattice contain minimal idempotents. An example of a countably compact topological
semilattice whose topological space is H-closed is constructed. |
format |
Article |
author |
Chuchman, I. Gutik, O. |
spellingShingle |
Chuchman, I. Gutik, O. On H-closed topological semigroups and semilattices Algebra and Discrete Mathematics |
author_facet |
Chuchman, I. Gutik, O. |
author_sort |
Chuchman, I. |
title |
On H-closed topological semigroups and semilattices |
title_short |
On H-closed topological semigroups and semilattices |
title_full |
On H-closed topological semigroups and semilattices |
title_fullStr |
On H-closed topological semigroups and semilattices |
title_full_unstemmed |
On H-closed topological semigroups and semilattices |
title_sort |
on h-closed topological semigroups and semilattices |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2007 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/157357 |
citation_txt |
On H-closed topological semigroups and semilattices / I. Chuchman, O. Gutik // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 1. — С. 13–23. — Бібліогр.: 10 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT chuchmani onhclosedtopologicalsemigroupsandsemilattices AT gutiko onhclosedtopologicalsemigroupsandsemilattices |
first_indexed |
2023-05-20T17:52:02Z |
last_indexed |
2023-05-20T17:52:02Z |
_version_ |
1796154275147022336 |