Weighted partially orderd sets of finite type

We define representations of weighted posets and construct for them reflection functors. Using this technique we prove that a weighted poset is of finite representation type if and only if its Tits form is weakly positive; then indecomposable representations are in one-to-one correspondence with...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автор: Drozd-Koroleva, O.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2006
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/157358
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Weighted partially orderd sets of finite type / O. Drozd-Koroleva // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 2. — С. 36–49. — Бібліогр.: 12 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We define representations of weighted posets and construct for them reflection functors. Using this technique we prove that a weighted poset is of finite representation type if and only if its Tits form is weakly positive; then indecomposable representations are in one-to-one correspondence with the positive roots of the Tits form.