Weighted partially orderd sets of finite type
We define representations of weighted posets and construct for them reflection functors. Using this technique we prove that a weighted poset is of finite representation type if and only if its Tits form is weakly positive; then indecomposable representations are in one-to-one correspondence with...
Збережено в:
Дата: | 2006 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2006
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/157358 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Weighted partially orderd sets of finite type / O. Drozd-Koroleva // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 2. — С. 36–49. — Бібліогр.: 12 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We define representations of weighted posets and
construct for them reflection functors. Using this technique we
prove that a weighted poset is of finite representation type if and
only if its Tits form is weakly positive; then indecomposable representations are in one-to-one correspondence with the positive roots
of the Tits form. |
---|